Embedded Computer Systems: Architectures, Modeling, and Simulation


Book Description

This book constitutes the refereed proceedings of the 20th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2020, held in Samos, Greece, in July 2020.* The 16 regular papers presented were carefully reviewed and selected from 35 submissions. In addition, 9 papers from two special sessions were included, which were organized on topics of current interest: innovative architectures for security and European projects on embedded and high performance computing for health applications. * The conference was held virtually due to the COVID-19 pandemic.




Intelligent Computing


Book Description

This book is a collection of extremely well-articulated, insightful and unique state-ofthe-art papers presented at the Computing Conference which took place in London on June 22–23, 2023. A total of 539 papers were received out of which 193 were selected for presenting after double-blind peer-review. The book covers a wide range of scientific topics including IoT, Artificial Intelligence, Computing, Data Science, Networking, Data security and Privacy, etc. The conference was successful in reaping the advantages of both online and offline modes. The goal of this conference is to give a platform to researchers with fundamental contributions and to be a premier venue for academic and industry practitioners to share new ideas and development experiences. We hope that readers find this book interesting and valuable. We also expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject.




Completion Detection in Asynchronous Circuits


Book Description

This book is intended for designers with experience in traditional (clocked) circuit design, seeking information about asynchronous circuit design, in order to determine if it would be advantageous to adopt asynchronous methodologies in their next design project. The author introduces a generic approach for implementing a deterministic completion detection scheme for asynchronous bundled data circuits that incorporates a data-dependent computational process, taking advantage of the average-case delay. The author validates the architecture using a barrel shifter, as shifting is the basic operation required by all the processors. The generic architecture proposed in this book for a deterministic completion detection scheme for bundled data circuits will facilitate researchers in considering the asynchronous design style for developing digital circuits.




Verification, Model Checking, and Abstract Interpretation


Book Description

This book constitutes the proceedings of the 23rd International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2022, which took place in Philadelphia, PA, USA, in January 2022. The 22 papers presented in this volume were carefully reviewed from 48 submissions. VMCAI provides a forum for researchers working on verification, model checking, and abstract interpretation and facilitates interaction, cross-fertilization, and advancement of hybrid methods that combine these and related areas.




Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design


Book Description

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.




Congress on Intelligent Systems


Book Description

This book is a collection of selected papers presented at the Second Congress on Intelligent Systems (CIS 2021), organized by Soft Computing Research Society and CHRIST (Deemed to be University), Bengaluru, India during September 4 – 5, 2021. It includes novel and innovative work from experts, practitioners, scientists and decision-makers from academia and industry. It covers topics such as Internet of Things, information security, embedded systems, real-time systems, cloud computing, big data analysis, quantum computing, automation systems, bio-inspired intelligence, cognitive systems, cyber physical systems, data analytics, data/web mining, data science, intelligence for security, intelligent decision making systems, intelligent information processing, intelligent transportation, artificial intelligence for machine vision, imaging sensors technology, image segmentation, convolutional neural network, image/video classification, soft computing for machine vision, pattern recognition, human computer interaction, robotic devices and systems, autonomous vehicles, intelligent control systems, human motor control, game playing, evolutionary algorithms, swarm optimization, neural network, deep learning, supervised learning, unsupervised learning, fuzzy logic, rough sets, computational optimization, and neuro fuzzy systems.




Introduction to Asynchronous Circuit Design


Book Description

This book is an introduction to the design of asynchronous circuits. It is an updated and significantly extended version of an eight-chapter tutorial that first appeared as Part I in the book "Principles of asynchronous circuit design -- A systems perspective" edited by Sparsø and Furber (2001); a book that has become a standard reference on the topic. The extensions include improved coverage of data-flow components, a new chapter on two-phase bundled-data circuits, a new chapter on metastability, arbitration, and synchronization, and a new chapter on performance analysis using timed Petri nets. With these extensions, the text now provides a more complete coverage of the topic, and it is now made available as a stand-alone book. The book is a beginner's text and the amount of formal notation is deliberately kept at a minimum, using instead plain English and graphical illustrations to explain the underlying intuition and reasoning behind the concepts and methods covered. The book targets senior undergraduate and graduate students in Electrical and Computer Engineering and industrial designers with a background in conventional (clocked) digital design who wish to gain an understanding of asynchronous circuit design.




Digital Systems and Applications


Book Description

New design architectures in computer systems have surpassed industry expectations. Limits, which were once thought of as fundamental, have now been broken. Digital Systems and Applications details these innovations in systems design as well as cutting-edge applications that are emerging to take advantage of the fields increasingly sophisticated capabilities. This book features new chapters on parallelizing iterative heuristics, stream and wireless processors, and lightweight embedded systems. This fundamental text— Provides a clear focus on computer systems, architecture, and applications Takes a top-level view of system organization before moving on to architectural and organizational concepts such as superscalar and vector processor, VLIW architecture, as well as new trends in multithreading and multiprocessing. includes an entire section dedicated to embedded systems and their applications Discusses topics such as digital signal processing applications, circuit implementation aspects, parallel I/O algorithms, and operating systems Concludes with a look at new and future directions in computing Features articles that describe diverse aspects of computer usage and potentials for use Details implementation and performance-enhancing techniques such as branch prediction, register renaming, and virtual memory Includes a section on new directions in computing and their penetration into many new fields and aspects of our daily lives




From Variability Tolerance to Approximate Computing in Parallel Integrated Architectures and Accelerators


Book Description

This book focuses on computing devices and their design at various levels to combat variability. The authors provide a review of key concepts with particular emphasis on timing errors caused by various variability sources. They discuss methods to predict and prevent, detect and correct, and finally conditions under which such errors can be accepted; they also consider their implications on cost, performance and quality. Coverage includes a comparative evaluation of methods for deployment across various layers of the system from circuits, architecture, to application software. These can be combined in various ways to achieve specific goals related to observability and controllability of the variability effects, providing means to achieve cross layer or hybrid resilience.




Asynchronous Circuit Design


Book Description

With asynchronous circuit design becoming a powerful tool in thedevelopment of new digital systems, circuit designers are expectedto have asynchronous design skills and be able to leverage them toreduce power consumption and increase system speed. This book walksreaders through all of the different methodologies of asynchronouscircuit design, emphasizing practical techniques and real-worldapplications instead of theoretical simulation. The only guide ofits kind, it also features an ftp site complete with supportmaterials. Market: Electrical Engineers, Computer Scientists, DeviceDesigners, and Developers in industry. An Instructor Support FTP site is available from the Wileyeditorial department.