2019 IEEE 58th Conference on Decision and Control (CDC)


Book Description

The CDC is recognized as the premier scientific and engineering conference dedicated to the advancement of the theory and practice of systems and control The CDC annually brings together an international community of researchers and practitioners in the field of automatic control to discuss new research results, perspectives on future developments, and innovative applications relevant to decision making, systems and control, and related areas The 58th CDC will feature contributed and invited papers, as well as workshops and may include tutorial sessions The IEEE CDC is hosted by the IEEE Control Systems Society (CSS) in cooperation with the Society for Industrial and Applied Mathematics (SIAM), the Institute for Operations Research and the Management Sciences (INFORMS), the Japanese Society for Instrument and Control Engineers (SICE), and the European Union Control Association (EUCA)




Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control


Book Description

This book includes original, peer-reviewed research papers from the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC2021), held in Shenzhen, China on January 19-22, 2022. The topics covered include but are not limited to: reviews and discussions of swarm intelligence, basic theories on swarm intelligence, swarm communication and networking, swarm perception, awareness and location, swarm decision and planning, cooperative control, cooperative guidance, swarm simulation and assessment. The papers showcased here share the latest findings on theories, algorithms and applications in swarm intelligence and cooperative control, making the book a valuable asset for researchers, engineers, and university students alike.







Learning-based Model Predictive Control with closed-loop guarantees


Book Description

The performance of model predictive control (MPC) largely depends on the accuracy of the prediction model and of the constraints the system is subject to. However, obtaining an accurate knowledge of these elements might be expensive in terms of money and resources, if at all possible. In this thesis, we develop novel learning-based MPC frameworks that actively incentivize learning of the underlying system dynamics and of the constraints, while ensuring recursive feasibility, constraint satisfaction, and performance bounds for the closed-loop. In the first part, we focus on the case of inaccurate models, and analyze learning-based MPC schemes that include, in addition to the primary cost, a learning cost that aims at generating informative data by inducing excitation in the system. In particular, we first propose a nonlinear MPC framework that ensures desired performance bounds for the resulting closed-loop, and then we focus on linear systems subject to uncertain parameters and noisy output measurements. In order to ensure that the desired learning phase occurs in closed-loop operations, we then propose an MPC framework that is able to guarantee closed-loop learning of the controlled system. In the last part of the thesis, we investigate the scenario where the system is known but evolves in a partially unknown environment. In such a setup, we focus on a learning-based MPC scheme that incentivizes safe exploration if and only if this might yield to a performance improvement.




Automated Technology for Verification and Analysis


Book Description

This book constitutes the refereed proceedings of the 19th International Symposium on Automated Technology for Verification and Analysis, ATVA 2021, held in Gold Coast, Australia in October 2021. The symposium is dedicated to promoting research in theoretical and practical aspects of automated analysis, verification and synthesis by providing an international venue for the researchers to present new results. The 19 regular papers presented together with 4 tool papers and 1 invited paper were carefully reviewed and selected from 75 submissions. The papers are divided into the following topical sub-headings: Automata Theory; Machine learning for Formal Methods; Theorem Proving and Tools; Model Checking; Probabilistic Analysis; Software and Hardware Verification; System Synthesis and Approximation; and Verification of Machine Learning.




Distributed Optimization with Application to Power Systems and Control


Book Description

Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization.




Performance Evaluation Methodologies and Tools


Book Description

This volume contains the proceedings of the 16th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2023, which took place in Heraklion, Crete during September 6-7, 2023. The conference brought together researchers, developers, and practitioners from around the world and from different communities including computer science, networks and telecommunications, operations research, optimization, control theory, and manufacturing. The 27 members of the International Program Committee (PC) helped to provide at least 3 reviews for each of the 30 submitted contributions. Based on the reviews and PC discussions, 11 high-quality papers (9 research papers, 1 tool paper, and 1 work-in-progress paper) were accepted to be presented during the conference. The volume includes contributions organized into four thematic sessions: Games and Optimization; Simulation; Networking and Queues; Tools.




Distributed Optimization in Networked Systems


Book Description

This book focuses on improving the performance (convergence rate, communication efficiency, computational efficiency, etc.) of algorithms in the context of distributed optimization in networked systems and their successful application to real-world applications (smart grids and online learning). Readers may be particularly interested in the sections on consensus protocols, optimization skills, accelerated mechanisms, event-triggered strategies, variance-reduction communication techniques, etc., in connection with distributed optimization in various networked systems. This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike.




Cyber-Physical-Human Systems


Book Description

Cyber–Physical–Human Systems A comprehensive edited volume exploring the latest in the interactions between cyber–physical systems and humans In Cyber–Physical–Human Systems: Fundamentals and Applications, a team of distinguished researchers delivers a robust and up-to-date volume of contributions from leading researchers on Cyber–Physical–Human Systems, an emerging class of systems with increased interactions between cyber–physical, and human systems communicating with each other at various levels across space and time, so as to achieve desired performance related to human welfare, efficiency, and sustainability. The editors have focused on papers that address the power of emerging CPHS disciplines, all of which feature humans as an active component during cyber and physical interactions. Articles that span fundamental concepts and methods to various applications in engineering sectors of transportation, robotics, and healthcare and general socio-technical systems such as smart cities are featured. Together, these articles address challenges and opportunities that arise due to the emerging interactions between cyber–physical systems and humans, allowing readers to appreciate the intersection of cyber–physical system research and human behavior in large-scale systems. In the book, readers will also find: A thorough introduction to the fundamentals of cyber–physical–human systems In-depth discussions of cyber–physical–human systems with applications in transportation, robotics, and healthcare A comprehensive treatment of socio-technical systems, including social networks and smart cities Perfect for cyber–physical systems researchers, academics, and graduate students, Cyber–Physical–Human Systems: Fundamentals and Applications will also earn a place in the libraries of research and development professionals working in industry and government agencies.