Photovoltaic Solar Energy


Book Description

Photovoltaic Solar Energy Thoroughly updated overview of photovoltaic technology, from materials to modules and systems Volume 2 of Photovoltaic Solar Energy provides fundamental and contemporary knowledge about various photovoltaic technologies in the framework of material science, device physics of solar cells, chemistry for manufacturing, engineering of PV modules, and the design aspects of photovoltaic applications, with the aim of informing the reader about the basic knowledge of each aspect of photovoltaic technologies and applications in the context of the most recent advances in science and engineering. The text is written by leading specialists for each topic in a concise manner and includes the most recent references for deeper study. Moreover, the book gives insights into possible future developments in the field of photovoltaics. The book builds on the success of Volume 1 of Photovoltaic Solar Energy, which was published by Wiley in January 2017. As science and technology is progressing fast in some areas of photovoltaics, several topics needed to be readdressed. Volume 2 also covers some basic aspects of the subject that were not addressed in Volume 1. Sample topics covered in Photovoltaic Solar Energy include: Solar Irradiance Resources Crystalline Silicon Technologies (Cz Ingots, TOPCon, Heterojunction, Passivating contacts, Hydrogenation and Carrier Induced Degradation) Perovskite and Tandem solar cells Characterization and Measurements PV Modules PV Systems and Applications (integration in buildings, agriculture, water, vehicles) Sustainability Providing comprehensive coverage of the subject, Photovoltaic Solar Energy is an essential resource for undergraduate and graduate students in science or engineering, young professionals in PV research or the PV industry, professors, teachers, and PV specialists who want to receive updated information. A scientific or engineering degree is a prerequisite.




Advanced Information Networking and Applications


Book Description

This book covers the theory, design and applications of computer networks, distributed computing and information systems. Networks of today are going through a rapid evolution, and there are many emerging areas of information networking and their applications. Heterogeneous networking supported by recent technological advances in low-power wireless communications along with silicon integration of various functionalities such as sensing, communications, intelligence and actuations is emerging as a critically important disruptive computer class based on a new platform, networking structure and interface that enable novel, low-cost and high-volume applications. Several of such applications have been difficult to realize because of many interconnections problems. To fulfill their large range of applications, different kinds of networks need to collaborate, and wired and next generation wireless systems should be integrated in order to develop high-performance computing solutions to problems arising from the complexities of these networks. The aim of the book “Advanced Information Networking and Applications” is to provide the latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and applications.




Photovoltaics for Space


Book Description

PV has traditionally been used for electric power in space. Solar panels on spacecraft are usually the sole source of power to run the sensors, active heating and cooling, and communications. Photovoltaics for Space: Key Issues, Missions and Alternative Technologies provides an overview of the challenges to efficiently produce solar power in near-Earth space and beyond: the materials and device architectures that have been developed to surmount these environmental and mission-specific barriers. The book is organized in four sections consisting of detailed introductory and background content as well as a collection of in-depth space environment, materials processing, technology, and mission overviews by international experts. This book will detail how to design and optimize a space power system's performance for power-to-weight ratio, effectiveness at end of operational life (EOL) compared to beginning of operational life (BOL), and specific mission objectives and goals. This book outlines the knowledge required for practitioners and advanced students interested in learning about the background, materials, devices, environmental challenges, missions, and future for photovoltaics for space exploration. - Provides an update to state-of-the-art and emerging solar cell technologies - Features comprehensive coverage of solar cells for space exploration and materials/device technology options available - Explains the extreme conditions and mission challenges to overcome when using photovoltaics in space







Industry 4.0


Book Description

This book presents Industry 4.0 enabler technologies and tools. It also highlights some of the existing empirical applications in the context of manufacturing. The book elucidates innovative thematic concepts of Industry 4.0 and its perspectives. It establishes routes to empirically utilize Industry 4.0 standards for manufacturing companies. The book can be used as a reference for professionals/engineers, researchers, and students.




Applications of Computational Intelligence in Management & Mathematics


Book Description

Computational intelligence consists of those techniques that imitate the human brain and nature to adopt the decision-making approach. This book contains selected papers from the 8th International Conference on Computers, Management and Mathematical Sciences (ICCM) 2022 about fuzzy systems, neural networks and evolutionary computation that can address stochastic environments where reasoning is a significant attribute to derive potential solutions and focus on the business domain's computational aspects. This is a conference proceedings for scholars/students who are using the powerful algorithms, concepts and principles of computational intelligence in a wide spectrum of research cases.




Physics of Thin-Film Photovoltaics


Book Description

PHYSICS OF THIN-FILM PHOTOVOLTAICS Tackling one of the hottest topics in renewables, thin-film photovoltaics, the authors present the latest updates, technologies, and applications, offering the most up-to-date and thorough coverage available to the engineer, scientist, or student. It appears rather paradoxical that thin-film photovoltaics (PVs) are made of materials that seem unacceptable from the classical PV perspective, and yet they often outperform classical PV. This exciting new volume solves that paradox by switching to a new physics paradigm. Many concepts here fall beyond the classical PV scope. The differences lie in device thinness (microns instead of millimeters) and morphology (non-crystalline instead of crystalline). In such structures, the charge carriers can reach electrodes without recombination. On the other hand, thin disordered structures render a possibility of detrimental lateral nonuniformities (“recombination highways”), and their energy spectra give rise to new recombination modes. The mechanisms of thermal exchange and device degradation are correspondingly unique. The overall objective of this book is to give a self-contained in-depth discussion of the physics of thin-film systems in a manner accessible to both researchers and students. It covers most aspects of the physics of thin-film PV, including device operations, material structure and parameters, thin-film junction formation, analytical and numerical modeling, concepts of large area effects and lateral non-uniformities, physics of shunting (both shunt growth and effects), and device degradation. Also, it reviews a variety of physical diagnostic techniques proven with thin-film PV. Whether for the veteran engineer or the student, this is a must-have for any library. This outstanding new volume: Covers not only the state-of-the-art of thin-film photovoltaics, but also the basics, making this volume useful not just to the veteran engineer, but the new-hire or student as well Offers a comprehensive coverage of thin-film photovoltaics, including operations, modeling, non-uniformities, piezo-effects, and degradation Includes novel concepts and applications never presented in book format before Is an essential reference, not just for the engineer, scientist, and student, but the unassuming level of presentation also makes it accessible to readers with a limited physics background Is filled with workable examples and designs that are helpful for practical applications Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field Audience: Industrial professionals in photovoltaics, such as engineers, managers, research and development staff, technicians, government and private research labs; also academic and research universities, such as physics, chemistry, and electrical engineering departments, and graduate and undergraduate students studying electronic devices, semiconductors, and energy disciplines




Intelligent Manufacturing and Energy Sustainability


Book Description

This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2023) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Hyderabad, India, during June 23–24, 2023. It covers topics in the areas of automation, manufacturing technology, and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy, and energy sustainability.




Renewable Energy Integration in Utility Grids


Book Description

Renewable Energy Integration in Utility Grids: Advances in Power Quality, Protection, Stability, and Flexibility reviews current challenges and technologically driven solutions to mitigate the significant issues associated with increasing renewable resource penetration in utility grid networks. It provides a detailed framework to address significant challenges for high renewable energy integration into the utility grid networks, using intelligent techniques and advanced power electronics technology. Chapters address current advances in the grid integration of wind technology, solar PV systems, solar thermal plants, reactive power management, grid stability, variability, power quality, power system protection, generation-side flexibility, demand-side flexibility, smart monitoring and communication, and regulatory frameworks. - Provides a detailed overview of the core challenges faced by utility grids with high renewable energy penetration, together with potential solutions - Amalgamates highly interdisciplinary technical guidance for optimized design, flexible operation, control, and maintenance in renewable-dominated grids - Draws from the contributions of highly-respected global researchers and practitioners, featuring carefully selected case studies reflecting global practice and perspectives - Provides deep insights on many critical issues pertaining to grid-integrated renewable energy, including flexibility, quality, stability, and protection