21st Century Challenges in Chemical Crystallography II


Book Description

This volume summarises recent developments and highlights new techniques which will define possible future directions for small molecule X-ray crystallography. It provides an insight into how specific aspects of crystallography are developing and shows how they may interact or integrate with other areas of science. The development of more sophisticated equipment and the massive rise in computing power has made it possible to solve the three-dimensional structure of an organic molecule within hours if not minutes. This successful trajectory has resulted in the ability to study ever more complex molecules and use smaller and smaller crystals. The structural parameters for over a million organic and organometallic compounds are now archived in the most commonly used database and this wealth of information creates a new set of problems for future generations of scientists. The volume provides some insight into how users of crystallographic structural data banks can navigate their way through a world where “big data” has become the norm. The coupling of crystallography to quantum chemical calculations provides detailed information about electron distributions in crystals affording a much more detailed analysis of bonding than has been possible previously. In quantum crystallography, quantum mechanical wavefunctions are used to extract information about bonding and properties from the measured X-ray structure factors. The advent of quantum crystallography has resulted in form and structure factors derived from quantum mechanics which have been used in advanced refinement and wavefunction fitting. This volume describes how quantum mechanically derived atomic form factors and structure factors are constructed to allow the improved description of the diffraction experiment. It further discusses recent developments in this field and illustrates their applications with a wide range of examples. This volume will be of interest to chemists and crystallographers with an interest in the synthesis, characterisation and physical and catalytic properties of solid-state materials. It will also be relevant for the community of computational chemists who study chemical systems. Postgraduate students entering the field will benefit from a historical introduction to the way in which scientists have used the data derived from crystallography to develop new structural and bonding models.




21st Century Challenges in Chemical Crystallography I


Book Description

This volume summarises recent developments and possible future directions for small molecule X-ray crystallography. It reviews specific areas of crystallography which are rapidly developing and places them in a historical context. The interdisciplinary nature of the technique is emphasised throughout. It introduces and describes the chemical crystallographic and synchrotron facilities which have been at the cutting edge of the subject in recent decades. The introduction of new computer-based algorithms has proved to be very influential and stimulated and accelerated the growth of new areas of science. The challenges which will arise from the acquisition of ever larger databases are considered and the potential impact of artificial intelligence techniques stressed. Recent advances in the refinement and analysis of X-ray crystal structures are highlighted. In addition the recent developments in time resolved single crystal X-ray crystallography are discussed. Recent years have demonstrated how this technique has provided important mechanistic information on solid-state reactions and complements information from traditional spectroscopic measurements. The volume highlights how the prospect of being able to routinely “watch” chemical processes as they occur provides an exciting possibility for the future. Recent advances in X-ray sources and detectors that have also contributed to the possibility of dynamic single-crystal X-ray diffraction methods are presented. The coupling of crystallography and quantum chemical calculations provides detailed information about electron distributions in crystals and has resulted in a more detailed understanding of chemical bonding. The volume will be of interest to chemists and crystallographers with an interest in the synthesis, characterisation and physical and catalytic properties of solid-state materials. Postgraduate students entering the field will benefit from a historical introduction to the subject and a description of those techniques which are currently used. Since X-ray crystallography is used so widely in modern chemistry it will serve to alert senior chemists to those developments which will become routine in coming decades. It will also be of interest to the broad community of computational chemists who study chemical systems.




50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules


Book Description

The 50 Year Anniversary of the development of electron counting paradigms for polyhedral molecules is celebrated in two volumes of Structure and Bonding. Volume 1 covers the historical development, theoretical models and applications to boranes and metalloboranes.




Improving and Tailoring Enzymes for Food Quality and Functionality


Book Description

Improving and Tailoring Enzymes for Food Quality and Functionality, Second Edition covers the most relevant information demanded in the production, engineering, and application of enzymes. The title is very detailed and is in the important cross-field of academia and industry. This totally revised new edition covers a broad range of topics related to enzymes and their use in food, presenting both the fundamental theory and practical application, updated with interesting novel information on biosensors, waste, valorization, up-cycling and engineering perspectives, besides an increased focus on sustainability. - Thoroughly updated revision covering a broad range of topics related to enzymes and their use in the food industry - Presents both the fundamental theory and recent examples from the literature, including the fundamentals of protein folding and enzyme catalysis, the preparation of enzymes from natural and recombinant sources, immobilizing enzymes, and a range of specific food applications - Covers new research directions in enzymes, thus helping those trying to solve a technical issue or develop a new product




New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes


Book Description

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes. - Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology - Features detailed reviews written by leading international researchers




Solid State Chemistry


Book Description

"A comprehensive guide to solid-state chemistry which is ideal for all undergraduate levels. It covers well the fundamentals of the area, from basic structures to methods of analysis, but also introduces modern topics such as sustainability." Dr. Jennifer Readman, University of Central Lancashire, UK "The latest edition of Solid State Chemistry combines clear explanations with a broad range of topics to provide students with a firm grounding in the major theoretical and practical aspects of the chemistry of solids." Professor Robert Palgrave, University College London, UK Building a foundation with a thorough description of crystalline structures, this fifth edition of Solid State Chemistry: An Introduction presents a wide range of the synthetic and physical techniques used to prepare and characterise solids. Going beyond this, this largely nonmathematical introduction to solid-state chemistry includes the bonding and electronic, magnetic, electrical, and optical properties of solids. Solids of particular interest—porous solids, superconductors, and nanostructures—are included. Practical examples of applications and modern developments are given. It offers students the opportunity to apply their knowledge in real-life situations and will serve them well throughout their degree course. New in the Fifth Edition A companion website which offers accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more A new chapter on sustainability in solid-state chemistry written by an expert in this field Cryo-electron microscopy X-ray photoelectron spectroscopy (ESCA) Covalent organic frameworks Graphene oxide and bilayer graphene Elaine A. Moore studied chemistry as an undergraduate at Oxford University and then stayed on to complete a DPhil in theoretical chemistry with Peter Atkins. After a two-year postdoctoral position at the University of Southampton, she joined the Open University in 1975, becoming a lecturer in chemistry in 1977, senior lecturer in 1998, and reader in 2004. She retired in 2017 and currently has an honorary position at the Open University. She has produced OU teaching texts in chemistry for courses at levels 1, 2, and 3 and written texts in astronomy at level 2 and physics at level 3. She was team leader for the production and presentation of an Open University level 2 chemistry module delivered entirely online. She is a Fellow of the Royal Society of Chemistry and a Senior Fellow of the Higher Education Academy. She was co-chair for the successful Departmental submission of an Athena Swan bronze award. Lesley E. Smart studied chemistry at Southampton University, United Kingdom. After completing a PhD in Raman spectroscopy, she moved to a lectureship at the (then) Royal University of Malta. After returning to the United Kingdom, she took an SRC Fellowship to Bristol University to work on X-ray crystallography. From 1977 to 2009, she worked at the Open University chemistry department as a lecturer, senior lecturer, and Molecular Science Programme director, and she held an honorary senior lectureship there until her death in 2016. At the Open University, she was involved in the production of undergraduate courses in inorganic and physical chemistry and health sciences. She served on the Council of the Royal Society of Chemistry and as the chair of their Benevolent Fund.




The Handbook of Medicinal Chemistry: Principles and Practice


Book Description

The 2nd edition of The Handbook of Medicinal Chemistry is a carefully curated compilation of writing from global experts. Using their broad experience of medicinal chemistry, project leadership and drug discovery from both industry, academic and charity perspectives they are able to provide unparalleled insight into the field in a single, invaluable volume.




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.




Problems in Structural Inorganic Chemistry


Book Description

This textbook offers over 400 problems and solutions in structural inorganic chemistry for senior undergraduates and beginning graduates. It is an updated companion text to Advanced Structural Inorganic Chemistry by the same authors. The new edition adds over 100 new problems and three new chapters on metal compounds and bioinorganic chemistry.




21st Century Challenges in Chemical Crystallography


Book Description

"This volume summarises recent developments and highlights new techniques which will define possible future directions for small molecule X-ray crystallography. It provides an insight into how specific aspects of crystallography are developing and shows how they may interact or integrate with other areas of science.The development of more sophisticated equipment and the massive rise in computing power has made it possible to solve the three-dimensional structure of an organic molecule within hours if not minutes. This successful trajectory has resulted in the ability to study ever more complex molecules and use smaller and smaller crystals. The structural parameters for over a million organic and organometallic compounds are now archived in the most commonly used database and this wealth of information creates a new set of problems for future generations of scientists. The volume provides some insight into how users of crystallographic structural data banks can navigate their way through a world where “big data” has become the norm. The coupling of crystallography to quantum chemical calculations provides detailed information about electron distributions in crystals affording a much more detailed analysis of bonding than has been possible previously. In quantum crystallography, quantum mechanical wavefunctions are used to extract information about bonding and properties from the measured X-ray structure factors. The advent of quantum crystallography has resulted in form and structure factors derived from quantum mechanics which have been used in advanced refinement and wavefunction fitting. This volume describes how quantum mechanically derived atomic form factors and structure factors are constructed to allow the improved description of the diffraction experiment. It further discusses recent developments in this field and illustrates their applications with a wide range of examples.This volume will be of interest to chemists and crystallographers with an interest in the synthesis, characterisation and physical and catalytic properties of solid-state materials. It will also be relevant for the community of computational chemists who study chemical systems. Postgraduate students entering the field will benefit from a historical introduction to the way in which scientists have used the data derived from crystallography to develop new structural and bonding models."--