An Invitation to Analytic Combinatorics


Book Description

This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text.




Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory


Book Description

This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.




Combinatorics of Set Partitions


Book Description

Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities




The Mathematical Legacy of Richard P. Stanley


Book Description

Richard Stanley's work in combinatorics revolutionized and reshaped the subject. His lectures, papers, and books inspired a generation of researchers. In this volume, these researchers explain how Stanley's vision and insights influenced and guided their own perspectives on the subject. As a valuable bonus, this book contains a collection of Stanley's short comments on each of his papers. This book may serve as an introduction to several different threads of ongoing research in combinatorics as well as giving historical perspective.




Handbook of Enumerative Combinatorics


Book Description

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he




Multiple Stopping Problems


Book Description

This book presents the theory of rational decisions involving the selection of stopping times in observed discrete-time stochastic processes, both by single and multiple decision-makers. Readers will become acquainted with the models, strategies, and applications of these models. It begins with an examination of selected models framed as stochastic optimization challenges, emphasizing the critical role of optimal stopping times in sequential statistical procedures. The authors go on to explore models featuring multiple stopping and shares on leading applications, particularly focusing on change point detection, selection problems, and the nuances of behavioral ecology. In the following chapters, an array of perspectives on model strategies is presented, elucidating their interpretation and the methodologies underpinning their genesis. Essential notations and definitions are introduced, examining general theorems about solution existence and structure, with an intricate analysis of optimal stopping predicaments and addressing crucial multilateral models. The reader is presented with the practical application of models based on multiple stopping within stochastic processes. The coverage includes a diverse array of domains, including sequential statistics, finance, economics, and the broader generalization of the best-choice problem. Additionally, it delves into numerical and asymptotic solutions, offering a comprehensive exploration of optimal stopping quandaries. The book will be of interest to researchers and practitioners in fields such as economics, finance, and engineering. It could also be used by graduate students doing a research degree in insurance, economics or business analytics or an advanced undergraduate course in mathematical sciences.




Feynman Amplitudes, Periods and Motives


Book Description

This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.




Existence of Unimodular Triangulations–Positive Results


Book Description

Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.




Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem


Book Description

The Kronecker coefficient is the multiplicity of the -irreducible in the restriction of the -irreducible via the natural map , where are -vector spaces and . A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. The authors construct two quantum objects for this problem, which they call the nonstandard quantum group and nonstandard Hecke algebra. They show that the nonstandard quantum group has a compact real form and its representations are completely reducible, that the nonstandard Hecke algebra is semisimple, and that they satisfy an analog of quantum Schur-Weyl duality.




Developments in Language Theory


Book Description

This book constitutes the proceedings of the 19th International Conference on Developments in Language Theory, DLT 2015, held in Liverpool, UK. The 31 papers presented together with 5 invited talks were carefully reviewed and selected from 54 submissions. Its scope is very general and includes, among others, the following topics and areas: combinatorial and algebraic properties of words and languages, grammars, acceptors and transducers for strings, trees, graphs, arrays, algebraic theories for automata and languages, codes, efficient text algorithms, symbolic dynamics, decision problems, relationships to complexity theory and logic, picture description and analysis, polyominoes and bidimensional patterns, cryptography, concurrency, cellular automata, bio-inspired computing, and quantum computing.