2D Materials: Chemistry and Applications (Part 1)


Book Description

2D Materials: Chemistry and Applications offers a concise exploration of the revolutionary 2D materials synthesis, their properties, and diverse applications. It presents information about graphene and other 2D materials like germanene and stanene, emphasizing their synthesis, functionalization, and technological use. The book chapters in part 1 cover the foundational aspects of graphene' structure and production techniques, highlighting their potential in areas like energy storage, drug delivery, and nanoelectronics. The book also explains the versatile applications of graphene-based nanocomposites, highlighting their multifunctional capabilities. Chapters also demonstrate the impact of functionalization on applications like biomedical imaging, microbial control, and environmental sustainability. The challenges and solutions concerning the toxicity of graphene-related materials are also highlighted. This book is a foundational resource for researchers, academics, and industry professionals in materials science, nanotechnology, chemistry, and environmental engineering on 2D materials.




2D Materials


Book Description

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.




Fundamentals and Sensing Applications of 2D Materials


Book Description

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials




Fundamentals and Supercapacitor Applications of 2D Materials


Book Description

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive




2D Materials


Book Description

Most reference texts covering two-dimensional materials focus specifically on graphene, when in reality, there are a host of new two-dimensional materials poised to overtake graphene. This book provides an authoritative source of information on twodimensional materials covering a plethora of fields and subjects and outlining all two-dimensional materials in terms of their fundamental understanding, synthesis, and applications.




2D Materials for Energy Storage and Conversion


Book Description

This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors. 2D Materials for Energy Storage and Conversion is an invaluable reference for researchers and graduate students working with 2D materials for energy storage and conversion in the fields of nanotechnology, electrochemistry, materials chemistry, materials engineering and chemical engineering. Key Features: Provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion technologies Covers the most promising candidates for radically advanced energy storage Covers 2D heterostructures and provides a holistic view of the subject Includes 2D materials beyond graphene, defects engineering, and the main challenges in the field




Advanced Applications of 2D Nanostructures


Book Description

This book focuses on both recent advances and the applications of two-dimensional (2D) nanomaterials in different fields. This book encapsulates all the aspects related to 2D nanomaterials and their applications. It provides scientific and technological insights on novel routes of design and fabrication of few layered nanostructures and their hetero structures based on a variety of 2-D layered materials. It also covers a wide range of industrial applications of 2D nanomaterials. It emphasizes on the detailing of the various characterization techniques used. The book will be a valuable reference for beginners, researchers, and professionals interested in nano-materials and allied fields.




Two-dimensional Materials


Book Description

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.




2D Monoelemental Materials (Xenes) and Related Technologies


Book Description

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.




2D Nanomaterials for Energy Applications


Book Description

2D Nanomaterials for Energy Applications: Graphene and Beyond discusses the current state-of-the art of 2D nanomaterials used in energy-related applications. Sections cover nanogenerators, hydrogen storage and theoretical design. Each chapter focuses on a different energy application, thus allowing readers to gain a greater understanding of the most promising 2D materials in the field. The book's ultimate goal lies in describing how each energy technology is beneficial, hence it provides a valuable reference source for materials scientists and engineers. The physical and chemical properties of 2D materials can be effectively tuned through different strategies, such as controlling dimensions, the crystallographic structure and defects, or doping with heteroatoms. This flexibility facilitates the design of 2D materials for dedicated applications in the field of energy conversion and storage. Offers a single source for the major practical applications of 2D materials in the field of energy conversion and storage Explores how 2D materials are being used to create new, more efficient industrial energy products and devices Compares a variety of 2D materials, showing how the properties of a range of these materials make them beneficial for specific energy applications