Selective Targeting of Cancer Cells with RNA Aptamers


Book Description

Two of the most commonly diagnosed malignancies in men and women are cancers of the prostate and breast, respectively. Though many advances have been made in reducing the overall morbidity and mortality associated with these diseases, the high number of deaths that still occur emphasizes the need for safer and more effective therapeutic options. To this end, our lab was the first to describe the use of RNA aptamers to specifically deliver cytotoxic siRNAs to PSMA positive prostate cancer cells. This reagent, termed an aptamer-siRNA chimera, was shown to be an effective targeted cancer therapeutic upon intratumoral injection in a pre-clinical, xenograft, mouse model of prostate cancer. However, further work was needed to realize the full clinical potential of RNA aptamer-siRNA chimeras as a targeted therapeutic modality. The thesis laid out herein, describes work performed to optimize aptamer-siRNA technology in order to enable clinical translation and to increase the scope of this technology (i.e. increase the cancer types for which this technology can be used). We describe several improvements to our first generation PSMA aptamer-siRNA chimera which, include: decreasing the overall nucleotide content to aid in chemical synthesis, altering the siRNA structure to improve RNAi processing and addition of a 20kDa PEG moiety to increase pharmacokinetics/pharmacodynamics. All of these modifications lead to a more effective reagent at lower doses. Importantly, we demonstrate that our optimized reagent is now effective upon systemic administration in an in vivo mouse model of prostate cancer. In addition, we have also identified new aptamers to the receptor tyrosine kinase (RTK) EphA2. Given the broad expression of this RTK on various cancers, this work seeks to extend the scope of targeted aptamer therapeutics beyond that of prostate cancer. Finally, we demonstrate a novel aptamer selection methodology termed cell-internalization SELEX. This approach allowed us to select for aptamers that specifically targeted and internalize into HER2 expressing cells. This allowed us to readily translate all identified aptamers into aptamer-siRNA chimeras. We show that all chimeras tested were able to sensitize HER2+ breast cancer cells to low- dose cisplatin treatment. Taken together, the work described in this thesis significantly advances the field of targeted cancer therapeutics. Importantly, by demonstrating cancer cell-specific delivery of siRNA, our technology overcomes one of the most significant hurdles to the therapeutic use of siRNAs, delivery.




Aptamers Selected by Cell-SELEX for Theranostics


Book Description

This edited volume describes cell-SELEX as the fundamental tool used to generate aptamer molecules for a wide range of applications in molecular medicine, bioanalysis and chemical biology. Easily integrated into the natural heterogeneous cell matrix, aptamers can be effectively used in theranostics, bioanalysis, environment detection and biomedical studies. The book gathers reviews that reflect the latest advances in the field of aptamers and consists in fourteen chapters demonstrating essential examples of these aptamers and aptamer-nanomaterial assemblies, depending on the types of applications and biological systems. It also includes a separate chapter on the utilization of aptamers in real clinics and what will be required to achieve this significant goal. The book will be both appealing and useful to a broad audience, including biologists, bioscientists, and clinicians whose interests range from chemistry and biomedical engineering to cell and molecular biology and biotechnology. Weihong Tan is a Distinguished Professor of Chemistry and Biomedical Engineering at Hunan University, China and also a University of Florida Distinguished Professor and V.T. and Louis Jackson Professor of Chemistry at the University of Florida, USA. Xiaohong Fang is a Professor at the Institute of Chemistry, Chinese Academy of Sciences, China.




Aptamers


Book Description

Aptamers, often termed as ‘chemical antibodies,’ are an emerging class of synthetic ligands for efficient target-specific molecular recognition. The objective of this book is to highlight recent advances and potential of aptamers in various disease conditions. . This book focuses on the applications of aptamers in targeted nanotherapy, detection, and in molecular imaging in various disease conditions such as cancer, neurological diseases and infectious diseases.




Aptamers for Analytical Applications


Book Description

An essential guide that puts the focus on method developments and applications in aptamers In recent years, aptamer-based systems have been developed for a wide-range of analytical and medical applications. Aptamers for Analytical Applications offers an introduction to the topic, outlines the common protocols for aptamer synthesis, as well as providing information on the different optimization strategies that can obtain higher affinities to target molecules. The contributors?noted experts on the topic?provide an in-depth review of the characterization of aptamer-target molecule interaction and immobilization strategies and discuss the developments of methods for all the relevant applications. The book outlines different schemes to efficiently immobilize aptamers on substrates as well as summarizing the characterization methods for aptamer-ligand complexes. In addition, aptamer-based colorimetric, enzyme-linked, fluorescent, electrochemical, lateral flow and non-labeling analytical methods are presented. The book also reflects state-of-the-art and emerging applications of aptamer-based methods. This important resource: -Provides a guide to aptamers which provide highly specific and sensitive molecular recognition, with affinities in the range of antibodies and are much cheaper to produce -Offers a discussion of the analytical method developments and improvements with established systems and beyond -Offers a comprehensive guide to all the relevant application areas -Presents an authoritative book from contributors who are noted experts in the field Written for analytical chemists, biochemists, analytical researchers, Aptamers for Analytical Applications is a comprehensive book that adopts a methodological point of view to the important aspects of aptamer generation and modification with a strong emphasis on method developments for relevant applications.




Nucleic Acid Aptamers


Book Description

This volume provides protocol references covering recent developments in the aptamer field. Within the last decade, aptamers have become more and more popular, and their sophisticated biophysical properties together with their ability to be easily modified and, thus, adapted to various regimens makes them a very promising class of compounds. Divided into three sections, the book covers selection, a series of analytical methods to assess biophysical properties of aptamer-target interactions, as well as various applications of aptamers. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and easy to follow, Nucleic Acid Aptamers: Selection, Characterization, and Application provides a state-of-the-art summary of recent developments in the aptamer field and will be a helpful resource for scientists in the life sciences working with aptamers as tools to elucidate biological systems.




E. Coli Infections


Book Description

Gram-negative Escherichia coli (E. coli) bacteria are the most numerous commensal aerobic germs located in the human colon. Diarrhea caused by E. coli pathogenic strains is a major cause of death in developing countries, especially the sub-Saharan and South Asian areas. Some strains cause diarrhea, and all of them may produce an infectious disease. This book includes ten chapters covering the main aspects of infections related to E. coli, their pathogenic mechanisms, treatments, and resistance to diverse antibiotics.




Aptamers for Medical Applications


Book Description

This book outlines comprehensively the main medical uses of aptamers, from diagnosis to therapeutics in fourteen chapters. Pioneering topics covered include aptamer pharmaceuticals, aptamers for malign tumors, aptamers for personalized therapeutics and aptamers for point-of-care testing. The book offers an essential guide for medical scientists interested in developing aptamer-based schemes for better theranostics. It is therefore of interest for not only academic researchers, but also practitioners and medical researchers in various fields of medical science, medical research and bio-analytical chemistry.




Advances in Nucleic Acid Therapeutics


Book Description

The sequencing of the human genome and subsequent elucidation of the molecular pathways that are important in the pathology of disease have provided unprecedented opportunities for the development of new therapeutics. Nucleic acid-based drugs have emerged in recent years to yield extremely promising candidates for drug therapy to a wide range of diseases. Advances in Nucleic Acid Therapeutics is a comprehensive review of the latest advances in the field, covering the background of the development of nucleic acids for therapeutic purposes to the array of drug development approaches currently being pursued using antisense, RNAi, aptamer, immune modulatory and other synthetic oligonucleotides. Nucleic acid therapeutics is a field that has been continually innovating to meet the challenges of drug discovery and development; bringing contributions together from leaders at the forefront of progress, this book depicts the many approaches currently being pursued in both academia and industry. A go-to volume for medicinal chemists, Advances in Nucleic Acid Therapeutics provides a broad overview of techniques of contemporary interest in drug discovery.




Therapeutic Oligonucleotides


Book Description

This book provides a compelling overall update on current status of RNA interference