3D Stacked Memories for Digital Signal Processors


Book Description

Recently, three-dimensional (3D) integration technology has enabled researchers to explore novel architectures. Due to the growing memory requirements of modern signal processing applications, it was thought that digital signal processors (DSPs) could benefit from 3D memory integration technology where high-density memories are placed below processing cores. Until recently, it was believed that this integration could lower memory latencies by 45% to 60%, which would improve performance. 3D memory integration technology also allowed a large increase in the main memory bus width by using small through silicon vias (TSVs) instead of off-chip metal wires. This increase in the bus width meant each main memory request could bring more data into the last-level on-chip memory and improve the performance of streaming applications whose memory access behavior exhibits a large amount of spatial locality. My dissertation provides a more accurate 3D main memory model that demonstrates that the latency reduction of going from conventional DDR2 DRAM to 3D memory technology is roughly 4% instead of the often quoted 45% to 60%. With this model, I re-evaluate the performance impact of 3D main memory on DSPs and find the benefits from the latency savings are small. I next analyze current 3D main memory with Wide I/O, which can lower main memory latencies by 15.9% and greatly increase the main memory bus width. I demonstrate that using 3D main memory with Wide I/O and increasing the main memory bus width from 64 bits to 4,096 bits can improve the average performance of signal processing applications by 9.7%, but also increases average energy consumption by 2.6%. For energy-constraint DSPs that are often found in mobile devices, this increase may be unacceptable. To mitigate this energy increase, I propose novel techniques to dynamically scale the main memory bus width of a DSP based on the program phases of an application. These bandwidth scaling algorithms increase the main memory bus width during memory intense phases to improve performance and lower the bus width during compute intensive phases to improve energy efficiency. These algorithms can improve average DSP performance by 6.6% while increasing average energy consumption by only 0.5%.




Handbook of Signal Processing Systems


Book Description

It gives me immense pleasure to introduce this timely handbook to the research/- velopment communities in the ?eld of signal processing systems (SPS). This is the ?rst of its kind and represents state-of-the-arts coverage of research in this ?eld. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50’s by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore’s Law. (Moore himself admitted that Moore’s Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined. ) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today’s IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets!) The success of SPS requires a well-concerted integrated approach from mul- ple disciplines, such as device, design, and application.




3D Stacked Memory


Book Description

Our report on 3D stacked memory technology covers the Intellectual Property (Patent) landscape of this rapidly evolving technology and monitors its various sub-domains for licensing activity. We have analyzed the IP portfolios of SanDisk, Micron, Samsung, IBM and other major players to find the focus areas of their patenting efforts. Using our proprietary patent analytics tool, LexScore™, we identify the front runners in this technology domain with strong patent portfolio quality as well as a heavy patent filing activity. Using our proprietary Licensing Heat-map framework, we also predict licensing activity trend in various technology sub domains.




Design of 3D Integrated Circuits and Systems


Book Description

Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and systems, application of novel materials for 3D systems, and the thermal challenges to restrict power dissipation and improve performance of 3D systems. Containing contributions from experts in industry as well as academia, this authoritative text: Illustrates different 3D integration approaches, such as die-to-die, die-to-wafer, and wafer-to-wafer Discusses the use of interposer technology and the role of Through-Silicon Vias (TSVs) Presents the latest improvements in three major fields of thermal management for multiprocessor systems-on-chip (MPSoCs) Explores ThruChip Interface (TCI), NAND flash memory stacking, and emerging applications Describes large-scale integration testing and state-of-the-art low-power testing solutions Complete with experimental results of chip-level 3D integration schemes tested at IBM and case studies on advanced complementary metal–oxide–semiconductor (CMOS) integration for 3D integrated circuits (ICs), Design of 3D Integrated Circuits and Systems is a practical reference that not only covers a wealth of design issues encountered in 3D integration but also demonstrates their impact on the efficiency of 3D systems.




3D IC and RF SiPs: Advanced Stacking and Planar Solutions for 5G Mobility


Book Description

An interdisciplinary guide to enabling technologies for 3D ICs and 5G mobility, covering packaging, design to product life and reliability assessments Features an interdisciplinary approach to the enabling technologies and hardware for 3D ICs and 5G mobility Presents statistical treatments and examples with tools that are easily accessible, such as Microsoft’s Excel and Minitab Fundamental design topics such as electromagnetic design for logic and RF/passives centric circuits are explained in detail Provides chapter-wise review questions and powerpoint slides as teaching tools




Vertical 3D Memory Technologies


Book Description

The large scale integration and planar scaling of individual system chips is reaching an expensive limit. If individual chips now, and later terrabyte memory blocks, memory macros, and processing cores, can be tightly linked in optimally designed and processed small footprint vertical stacks, then performance can be increased, power reduced and cost contained. This book reviews for the electronics industry engineer, professional and student the critical areas of development for 3D vertical memory chips including: gate-all-around and junction-less nanowire memories, stacked thin film and double gate memories, terrabit vertical channel and vertical gate stacked NAND flash, large scale stacking of Resistance RAM cross-point arrays, and 2.5D/3D stacking of memory and processor chips with through-silicon-via connections now and remote links later. Key features: Presents a review of the status and trends in 3-dimensional vertical memory chip technologies. Extensively reviews advanced vertical memory chip technology and development Explores technology process routes and 3D chip integration in a single reference




Handbook of 3D Integration, Volume 1


Book Description

The first encompassing treatise of this new, but very important field puts the known physical limitations for classic 2D electronics into perspective with the requirements for further electronics developments and market necessities. This two-volume handbook presents 3D solutions to the feature density problem, addressing all important issues, such as wafer processing, die bonding, packaging technology, and thermal aspects. It begins with an introductory part, which defines necessary goals, existing issues and relates 3D integration to the semiconductor roadmap of the industry. Before going on to cover processing technology and 3D structure fabrication strategies in detail. This is followed by fields of application and a look at the future of 3D integration. The contributions come from key players in the field, from both academia and industry, including such companies as Lincoln Labs, Fraunhofer, RPI, ASET, IMEC, CEA-LETI, IBM, and Renesas.




Towards a Modeling Synthesis of Two or Three-Dimensional Circuits Through Substrate Coupling and Interconnections: Noises and Parasites


Book Description

The number of transistors in integrated circuits doubles every two years, as stipulated by Moore’s law, and this has been the driving force for the huge development of the microelectronics industry in the past 50 years – currently advanced to the nanometric scale. This e-book is dedicated to electronic noises and parasites, accounting for issues involving substrate coupling and interconnections, in the perspective of the 3D integration: a second track for enhancing integration, also compatible with Moore’s law. This reference explains the modeling of 3D circuits without delving into the latest advances, but highlights crucial problems, for instance electro-thermo-mechanical problems, which could be addressed through 3D modeling. The book also explains electromagnetic interferences , at different modeling levels (device and circuit) oriented towards 3D integration technologies. It also covers substrate noise, such as disturbances of digital blocks, power bounces, phase noise in oscillators, both at the device level, such as carriers or field fluctuations, and circuit levels. The entanglement between interconnect and substrate is also discussed. This e-book serves as a reference for advanced graduates or researchers in the field of micro and nano electronics interested in topics relevant to electromagnetic interference or the ‘noise’ domain, at device or circuit and system levels




3D Flash Memories


Book Description

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.




3D Integration in VLSI Circuits


Book Description

Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.