3D Cell Culture


Book Description

This book provides an overview of established 3D cell culture assays from leaders in the field. Their contributions cover a wide spectrum of techniques and approaches for 3D cell culture, from organoid cultures through organotypic models to microfluidic approaches and emerging 3D bioprinting techniques, which are used in developmental, stem cell, cancer, and pharmacological studies, among many others. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, 3D Cell Culture: Methods and Protocols aims to inspire researchers to develop novel 3D cell culture techniques according to their specific scientific needs and interests, leading to a new generation of physiologically relevant and realistic 3D cell cultures. Chapter 15 of this book is available open access under a CC BY 4.0 license.




3D Cell Culture


Book Description

Developed for a range of tissues where the culture environment takes into account the spatial organization of the cells therein, 3D cell culture models serve to bridge the gap between in vivo studies at one extreme with that of simple cell monolayers at the other. In 3D Cell Culture: Methods and Protocols, international experts describe a number of basic and applied methodologies taken from a breadth of scientific and engineering disciplines, many of which deal with direct applications of 3D culture models, most notably in the formation of tissues for clinical purpose. Beginning with an overview of the biological and materials scaffold requirements for successfully creating 3D models, the book delves into topics such as general scaffold design and fabrication techniques, models for bone, skin, cartilage, nerve, bladder, and hair follicles, and chapters on bioreactor design, imaging, and stem cells. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include brief introductions to their respective subjects, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, 3D Cell Culture: Methods and Protocols serves as a basic manual for laboratory-based scientists who not only need to have a comprehensive range of techniques contained within a single text but also require techniques described using a standard, convenient format.




Basic Concepts on 3D Cell Culture


Book Description

This textbook shall introduce the students to 3D cell culture approaches and applications. An overview on existing techniques and equipment is provided and insight into various aspects and challenges that researchers need to consider and face during culture of 3D cells is given. The reader will learn the importance of physiological cell, tissue and organ models and gains important knowledge on 3D analytics. This textbook deepens selected aspects of the textbook “Cell Culture Technology”, which also is published in this series, while offering extended insight into 3D cell culture. The concept of the textbook encompasses various lectures ranging from basics in cell cultivation, tissue engineering, biomaterials and biocompatibility, in vitro test systems and regenerative medicine. The textbook addresses Master- and PhD students interested and/or working in the field of modern cell culture applications and will support the understanding of the essential strategies in 3D cell culture and waken awareness for the potentials and challenges of this application.




Technology Platforms for 3D Cell Culture


Book Description

Technology Platforms for 3D Cell Culture: A Users Guide points to the options available to perform 3D culture, shows where such technology is available, explains how it works, and reveals how it can be used by scientists working in their own labs. Offers a comprehensive, focused guide to the current state-of-the-art technologies available for 3D cell culture Features contributions from leading developers and researchers active in 3D cell technology Gives clear instruction and guidance on performing specific 3D culture methods, along with colour illustrations and examples of where such technologies have been successfully applied Includes information on resources and technical support to help initiate the use of 3D culture methods




Stem Cells


Book Description

The second edition of Stem Cells: Scientific Facts and Fiction provides the non-stem cell expert with an understandable review of the history, current state of affairs, and facts and fiction of the promises of stem cells. Building on success of its award-winning preceding edition, the second edition features new chapters on embryonic and iPS cells and stem cells in veterinary science and medicine. It contains major revisions on cancer stem cells to include new culture models, additional interviews with leaders in progenitor cells, engineered eye tissue, and xeno organs from stem cells, as well as new information on "organs on chips" and adult progenitor cells. In the past decades our understanding of stem cell biology has increased tremendously. Many types of stem cells have been discovered in tissues that everyone presumed were unable to regenerate in adults, the heart and the brain in particular. There is vast interest in stem cells from biologists and clinicians who see the potential for regenerative medicine and future treatments for chronic diseases like Parkinson's, diabetes, and spinal cord lesions, based on the use of stem cells; and from entrepreneurs in biotechnology who expect new commercial applications ranging from drug discovery to transplantation therapies. - Explains in straightforward, non-specialist language the basic biology of stem cells and their applications in modern medicine and future therapy - Includes extensive coverage of adult and embryonic stem cells both historically and in contemporary practice - Richly illustrated to assist in understanding how research is done and the current hurdles to clinical practice




Bioprinting in Regenerative Medicine


Book Description

This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.




Male Germline Stem Cells: Developmental and Regenerative Potential


Book Description

Scientists investigating germ cells have, over the past 15 years, originated discoveries and innovations that give us valuable insights into the mechanisms that regulate not just stem cell function, but human development in its widest sense. With contributions from some of the leading researchers in the field, Male Germline Stem Cells: Developmental and Regenerative Potential assesses the implications of these discoveries for understanding the fundamental biology of germline stem cells as well as their potential for human stem cell-based therapies. This monograph covers many of the fundamental issues now being explored by today’s generation of stem cell researchers, including the field’s potential for regenerative medicine. Ranging from an assessment of the pluripotency of primordial germ cells and their possible applications in treating testicular cancer, to the recovery of once-mordant fertilization-competent sperm, this volume has it all. It is a reference point for any scientist involved in related research as well as being a timely summation of what could prove to be a hugely exciting and very fruitful area of inquiry.




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.




Differentiation of Embryonic Stem Cells


Book Description

This volume covers all aspects of embryonic stem cell differentiation, including mouse embryonic stem cells, mouse embryonic germ cells, monkey and human embryonic stem cells, and gene discovery.* Early commitment steps and generation of chimeric mice* Differentiation to mesoderm derivatives* Gene discovery by manipulation of mouse embryonic stem cells




Cell Culture Technology


Book Description

This textbook provides an overview on current cell culture techniques, conditions, and applications specifically focusing on human cell culture. This book is based on lectures, seminars and practical courses in stem cells, tissue engineering, regenerative medicine and 3D cell culture held at the University of Natural Resources and Life Sciences Vienna BOKU and the Gottfried Wilhelm Leibniz University Hannover, complemented by contributions from international experts, and therefore delivers in a compact and clear way important theoretical, as well as practical knowledge to advanced graduate students on cell culture techniques and the current status of research. The book is written for Master students and PhD candidates in biotechnology, tissue engineering and biomedicine working with mammalian, and specifically human cells. It will be of interest to doctoral colleges, Master- and PhD programs teaching courses in this area of research.