Enhanced Oil Recovery


Book Description

Enhanced Oil Recovery




Enhanced Oil Recovery


Book Description










Petroleum Engineering: Principles, Calculations, and Workflows


Book Description

Ein ausführlicher Praxisleitfaden zu Methoden für die Lösung komplexer Probleme in der Erdöltechnik. In der Erdöltechnik dominieren übergreifende wissenschaftliche und mathematische Prinzipien. Allerdings gibt es immer wieder Lücken zwischen Theorie und praktischer Anwendung. Petroleum Engineering: Principles, Calculations, and Workflows stellt Methoden für die Lösung einer Vielzahl praktischer Probleme in der Erdöltechnik vor. Jedes Kapitel beschäftigt sich mit einer spezifischen Problemstellung, beschreibt Formeln zur Erläuterung der primären Prinzipien dieses Problems und zeigt im Anschluss einfach nachvollziehbare Handreichungen für die praktische Anwendung. Hauptmerkmale dieses Bandes: - Fundierter und integrierter Ansatz für die Lösung inverser Probleme. - Ausführliche Untersuchung der Abläufe, einschließlich Modell- und Parametervalidierung. - Einfache Ansätze für die Lösung komplexer mathematischer Probleme. - Komplexe Berechnungen, die sich mit einfachen Methoden leicht implementieren lassen. - Überblick über wichtige Herangehensweisen, die für die Software- und Anwendungsentwicklung notwendig sind. - Formel- und Modellhandreichungen für die Diagnose, erstmalige Parametermodellierung, Simulation und Regression. Petroleum Engineering: Principles, Calculations, and Workflows ist ein wertvolles Referenzwerk für die Praxis und richtet sich an eine breite Zielgruppe: Geowissenschaftler, Explorationsgeologen und Ingenieure. Dieser zugängliche Leitfaden, ein fundiertes Nachschlagewerk für die Lösung alltäglicher Probleme in der Eröltechnik, eignet sich ebenfalls gut für Studenten im Hauptstudium, Postgraduierte, Berater, Softwareentwickler und Berufspraktiker.




Fractal Solutions for Understanding Complex Systems in Earth Sciences


Book Description

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.




Fundamental Controls on Fluid Flow in Carbonates


Book Description

This volume highlights key challenges for fluid-flow prediction in carbonate reservoirs, the approaches currently employed to address these challenges and developments in fundamental science and technology. The papers span methods and case studies that highlight workflows and emerging technologies in the fields of geology, geophysics, petrophysics, reservoir modelling and computer science. Topics include: detailed pore-scale studies that explore fundamental processes and applications of imaging and flow modelling at the pore scale; case studies of diagenetic processes with complementary perspectives from reactive transport modelling; novel methods for rock typing; petrophysical studies that investigate the impact of diagenesis and fault-rock properties on acoustic signatures; mechanical modelling and seismic imaging of faults in carbonate rocks; modelling geological influences on seismic anisotropy; novel approaches to geological modelling; methods to represent key geological details in reservoir simulations and advances in computer visualization, analytics and interactions for geoscience and engineering.




Standard Handbook of Petroleum and Natural Gas Engineering: Volume 2


Book Description

Petroleum engineering now has its own true classic handbook that reflects the profession's status as a mature major engineering discipline. Formerly titled the Practical Petroleum Engineer's Handbook, by Joseph Zaba and W.T. Doherty (editors), this new, completely updated two-volume set is expanded and revised to give petroleum engineers a comprehensive source of industry standards and engineering practices. It is packed with the key, practical information and data that petroleum engineers rely upon daily. The result of a fifteen-year effort, this handbook covers the gamut of oil and gas engineering topics to provide a reliable source of engineering and reference information for analyzing and solving problems. It also reflects the growing role of natural gas in industrial development by integrating natural gas topics throughout both volumes. More than a dozen leading industry experts-academia and industry-contributed to this two-volume set to provide the best , most comprehensive source of petroleum engineering information available.







Hydraulic fracturing and geothermal energy


Book Description

Hydraulic fracturing has been and continues to be a major techno logical tool in oil and gas recovery, nuclear and other waste disposal, mining and particularly in-situ coal gasification, and, more recently, in geothermal heat recovery, particularly extracting heat from hot dry rock masses. The understanding of the fracture process under the ac tion of pressurized fluid at various temperatures is of fundamental scientific importance, which requires an adequate description of thermomechanical properties of subsurface rock, fluid-solid interaction effects, as well as degradation of the host rock due to temperature gradients introduced by heat extraction. Considerable progress has been made over the past several years in laboratory experiments, analytical and numerical modeling, and in-situ field studies in various aspects of hydraulic fracturing and geothermal energy extraction, by researchers in the United States and Japan and also elsewhere. However, the results have been scattered throughout the literature. Therefore, the time seemed ripe for bringing together selected researchers from the two countries, as well as observers from other countries, in order to survey the state of the art, exchange scientific information, and establish closer collaboration for further, better coordinated scientific effort in this important area of research and exploration.