5G and Beyond Wireless Systems


Book Description

This book presents the fundamental concepts, recent advancements, and opportunities for future research in various key enabling technologies in next-generation wireless communications. The book serves as a comprehensive source of information in all areas of wireless communications with a particular emphasis on physical (PHY) layer techniques related to 5G wireless systems and beyond. In particular, this book focuses on different emerging techniques that can be adopted in 5G wireless networks. Some of those techniques include massive-MIMO, mm-Wave communications, spectrum sharing, device-to-device (D2D) and vehicular to anything (V2X) communications, radio-frequency (RF) based energy harvesting, and NOMA. Subsequent chapters cover the fundamentals and PHY layer design aspects of different techniques that can be useful for the readers to get familiar with the emerging technologies and their applications.




Inclusive Radio Communications for 5G and Beyond


Book Description

Inclusive Radio Communication Networks for 5G and Beyond is based on the COST IRACON project that consists of 500 researchers from academia and industry, with 120 institutions from Europe, US and the Far East involved. The book presents state-of-the-art design and analysis methods for 5G (and beyond) radio communication networks, along with key challenges and issues related to the development of 5G networks. Covers the latest research on 5G networks – including propagation, localization, IoT and radio channels Based on the International COST research project, IRACON, with 120 institutions and 500 researchers from Europe, US and the Far East involved Provides coverage of IoT protocols, architectures and applications, along with IoT applications in healthcare Contains a concluding chapter on future trends in mobile communications and networking




Multiple Access Techniques for 5G Wireless Networks and Beyond


Book Description

This book presents comprehensive coverage of current and emerging multiple access, random access, and waveform design techniques for 5G wireless networks and beyond. A definitive reference for researchers in these fields, the book describes recent research from academia, industry, and standardization bodies. The book is an all-encompassing treatment of these areas addressing orthogonal multiple access and waveform design, non-orthogonal multiple access (NOMA) via power, code, and other domains, and orthogonal, non-orthogonal, and grant-free random access. The book builds its foundations on state of the art research papers, measurements, and experimental results from a variety of sources.




5G and Beyond Wireless Transport Technologies


Book Description

This text covers the key technologies employed in wireless links that enable increased data rates and thus are likely to be employed in support of 5G wireless transport networks, i.e., backhaul, midhaul, and fronthaul networks. The author presents technologies at an introductory level but nonetheless at a level that imparts to the reader a sound understanding of the fundamentals. The book is intended for those practicing engineers and graduate and upper undergraduate students who have an interest in acquiring, where missing, the necessary technology background in order to comprehend the functioning and capability of 5G based wireless transport links. The author focuses on those technologies that are key to achieving the high data rates and high reliability required of this transport. The material is presented in a clear, concise, and mathematically light fashion. Covers key wireless transport (backhaul, midhaul, and fronthaul) technologies for 5G and beyond, presented in a clear tractable fashion; Outlines the basic wireless transport transmitter/receiver terminal architecture, provides specifications of some such terminals, and indicates the link performance afforded by such terminals; Provides sufficient mathematics to make it technically coherent, but not so much as to make it challenging for a reader with no or limited familiarity with these technologies.




Information Theoretic Perspectives on 5G Systems and Beyond


Book Description

Understand key information-theoretic principles that underpin the design of next-generation cellular systems with this invaluable resource. This book is the perfect tool for researchers and graduate students in the field of information theory and wireless communications, as well as for practitioners in the telecommunications industry.




5G and Beyond


Book Description

This book provides an accessible and comprehensive tutorial on the key enabling technologies for 5G and beyond, covering both the fundamentals and the state-of-the-art 5G standards. The book begins with a historical overview of the evolution of cellular technologies and addresses the questions on why 5G and what is 5G. Following this, six tutorial chapters describe the fundamental technology components for 5G and beyond. These include modern advancements in channel coding, multiple access, massive multiple-input and multiple-output (MIMO), network densification, unmanned aerial vehicle enabled cellular networks, and 6G wireless systems. The second part of this book consists of five chapters that introduce the basics of 5G New Radio (NR) standards developed by 3GPP. These include 5G architecture, protocols, and physical layer aspects. The third part of this book provides an overview of the key 5G NR evolution directions. These directions include ultra-reliable low-latency communication (URLLC) enhancements, operation in unlicensed spectrum, positioning, integrated access and backhaul, air-to-ground communication, and non-terrestrial networks with satellite communication.




UAV Communications for 5G and Beyond


Book Description

Explore foundational and advanced issues in UAV cellular communications with this cutting-edge and timely new resource UAV Communications for 5G and Beyond delivers a comprehensive overview of the potential applications, networking architectures, research findings, enabling technologies, experimental measurement results, and industry standardizations for UAV communications in cellular systems. The book covers both existing LTE infrastructure, as well as future 5G-and-beyond systems. UAV Communications covers a range of topics that will be of interest to students and professionals alike. Issues of UAV detection and identification are discussed, as is the positioning of autonomous aerial vehicles. More fundamental subjects, like the necessary tradeoffs involved in UAV communication are examined in detail. The distinguished editors offer readers an opportunity to improve their ability to plan and design for the near-future, explosive growth in the number of UAVs, as well as the correspondingly demanding systems that come with them. Readers will learn about a wide variety of timely and practical UAV topics, like: Performance measurement for aerial vehicles over cellular networks, particularly with respect to existing LTE performance Inter-cell interference coordination with drones Massive multiple-input and multiple-output (MIMO) for Cellular UAV communications, including beamforming, null-steering, and the performance of forward-link C&C channels 3GPP standardization for cellular-supported UAVs, including UAV traffic requirements, channel modeling, and interference challenges Trajectory optimization for UAV communications Perfect for professional engineers and researchers working in the field of unmanned aerial vehicles, UAV Communications for 5G and Beyond also belongs on the bookshelves of students in masters and PhD programs studying the integration of UAVs into cellular communication systems.




Ultra-Dense Networks for 5G and Beyond


Book Description

Offers comprehensive insight into the theory, models, and techniques of ultra-dense networks and applications in 5G and other emerging wireless networks The need for speed—and power—in wireless communications is growing exponentially. Data rates are projected to increase by a factor of ten every five years—and with the emerging Internet of Things (IoT) predicted to wirelessly connect trillions of devices across the globe, future mobile networks (5G) will grind to a halt unless more capacity is created. This book presents new research related to the theory and practice of all aspects of ultra-dense networks, covering recent advances in ultra-dense networks for 5G networks and beyond, including cognitive radio networks, massive multiple-input multiple-output (MIMO), device-to-device (D2D) communications, millimeter-wave communications, and energy harvesting communications. Clear and concise throughout, Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications offers a comprehensive coverage on such topics as network optimization; mobility, handoff control, and interference management; and load balancing schemes and energy saving techniques. It delves into the backhaul traffic aspects in ultra-dense networks and studies transceiver hardware impairments and power consumption models in ultra-dense networks. The book also examines new IoT, smart-grid, and smart-city applications, as well as novel modulation, coding, and waveform designs. One of the first books to focus solely on ultra-dense networks for 5G in a complete presentation Covers advanced architectures, self-organizing protocols, resource allocation, user-base station association, synchronization, and signaling Examines the current state of cell-free massive MIMO, distributed massive MIMO, and heterogeneous small cell architectures Offers network measurements, implementations, and demos Looks at wireless caching techniques, physical layer security, cognitive radio, energy harvesting, and D2D communications in ultra-dense networks Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications is an ideal reference for those who want to design high-speed, high-capacity communications in advanced networks, and will appeal to postgraduate students, researchers, and engineers in the field.




Flexible and Cognitive Radio Access Technologies for 5G and Beyond


Book Description

Standards for 5G and beyond will require communication systems with a much more flexible and cognitive design to support a wide variety of services including smart vehicles, smart cities, smart homes, IoTs, and remote health. Although future 6G technologies may look like an extension of their 5G counterparts, new user requirements, completely new applications and use-cases, and networking trends will bring more challenging communication engineering problems. New communication paradigms in different layers will be required, in particular in the physical layer of future wireless communication systems.




Optical and Wireless Convergence for 5G Networks


Book Description

The mobile market has experienced unprecedented growth over the last few decades. Consumer trends have shifted towards mobile internet services supported by 3G and 4G networks worldwide. Inherent to existing networks are problems such as lack of spectrum, high energy consumption, and inter-cell interference. These limitations have led to the emergence of 5G technology. It is clear that any 5G system will integrate optical communications, which is already a mainstay of wide area networks. Using an optical core to route 5G data raises significant questions of how wireless and optical can coexist in synergy to provide smooth, end-to-end communication pathways. Optical and Wireless Convergence for 5G Networks explores new emerging technologies, concepts, and approaches for seamlessly integrating optical-wireless for 5G and beyond. Considering both fronthaul and backhaul perspectives, this timely book provides insights on managing an ecosystem of mixed and multiple access network communications focused on optical-wireless convergence. Topics include Fiber–Wireless (FiWi), Hybrid Fiber-Wireless (HFW), Visible Light Communication (VLC), 5G optical sensing technologies, approaches to real-time IoT applications, Tactile Internet, Fog Computing (FC), Network Functions Virtualization (NFV), Software-Defined Networking (SDN), and many others. This book aims to provide an inclusive survey of 5G optical-wireless requirements, architecture developments, and technological solutions.