5G Heterogeneous Networks


Book Description

This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.




Fundamental and Supportive Technologies for 5G Mobile Networks


Book Description

Mobile wireless communication systems have affected every aspect of life. By providing seamless connectivity, these systems enable almost all the smart devices in the world to communicate with high speed throughput and extremely low latency. The next generation of cellular mobile communications, 5G, aims to support the tremendous growth of interconnected things/devices (i.e., internet of things [IoT]) using the current technologies and extending them to be used in higher frequencies to cope with the huge number of different devices. In addition, 5G will provide massive capacity, high throughput, lower end-to-end delay, green communication, cost reduction, and extended coverage area. Fundamental and Supportive Technologies for 5G Mobile Networks provides detailed research on technologies used in 5G, their benefits, practical designs, and recent challenges and focuses on future applications that could exploit 5G network benefits. The content within this publication examines cellular communication, data transmission, and high-speed communication. It is designed for network analysts, IT specialists, industry professionals, software engineers, researchers, academicians, students, and scientists.




Efficient Integration of 5G and Beyond Heterogeneous Networks


Book Description

This book discusses the smooth integration of optical and RF networks in 5G and beyond (5G+) heterogeneous networks (HetNets), covering both planning and operational aspects. The integration of high-frequency air interfaces into 5G+ wireless networks can relieve the congested radio frequency (RF) bands. Visible light communication (VLC) is now emerging as a promising candidate for future generations of HetNets. Heterogeneous RF-optical networks combine the high throughput of visible light and the high reliability of RF. However, when implementing these HetNets in mobile scenarios, several challenges arise from both planning and operational perspectives. Since the mmWave, terahertz, and visible light bands share similar wave propagation characteristics, the concepts presented here can be broadly applied in all such bands. To facilitate the planning of RF-optical HetNets, the authors present an algorithm that specifies the joint optimal densities of the base stations by drawing on stochastic geometry in order to satisfy the users’ quality-of-service (QoS) demands with minimum network power consumption. From an operational perspective, the book explores vertical handovers and multi-homing using a cooperative framework. For vertical handovers, it employs a data-driven approach based on deep neural networks to predict abrupt optical outages; and, on the basis of this prediction, proposes a reinforcement learning strategy that ensures minimal network latency during handovers. In terms of multi-homing support, the authors examine the aggregation of the resources from both optical and RF networks, adopting a two-timescale multi-agent reinforcement learning strategy for optimal power allocation. Presenting comprehensive planning and operational strategies, the book allows readers to gain an in-depth grasp of how to integrate future coexisting networks at high-frequency bands in a cooperative manner, yielding reliable and high-speed 5G+ HetNets.




Recent Advances in Antenna Design for 5G Heterogeneous Networks


Book Description

The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies.




5G Networks


Book Description

A reliable and focused treatment of the emergent technology of fifth generation (5G) networks This book provides an understanding of the most recent developments in 5G, from both theoretical and industrial perspectives. It identifies and discusses technical challenges and recent results related to improving capacity and spectral efficiency on the radio interface side, and operations management on the core network side. It covers both existing network technologies and those currently in development in three major areas of 5G: spectrum extension, spatial spectrum utilization, and core network and network topology management. It explores new spectrum opportunities; the capability of radio access technology; and the operation of network infrastructure and heterogeneous QoE provisioning. 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is split into five sections: Physical Layer for 5G Radio Interface Technologies; Radio Access Technology for 5G Networks; 5G Network Interworking and Core Network Advancements; Vertical 5G Applications; and R&D and 5G Standardization. It starts by introducing emerging technologies in 5G software, hardware, and management aspects before moving on to cover waveform design for 5G and beyond; code design for multi-user MIMO; network slicing for 5G networks; machine type communication in the 5G era; provisioning unlicensed LAA interface for smart grid applications; moving toward all-IT 5G end-to-end infrastructure; and more. This valuable resource: Provides a comprehensive reference for all layers of 5G networks Focuses on fundamental issues in an easy language that is understandable by a wide audience Includes both beginner and advanced examples at the end of each section Features sections on major open research challenges 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is an excellent book for graduate students, academic researchers, and industry professionals, involved in 5G technology.




Towards User-Centric Intelligent Network Selection in 5G Heterogeneous Wireless Networks


Book Description

This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.




Towards 5G


Book Description

This book brings together a group of visionaries and technical experts from academia to industry to discuss the applications and technologies that will comprise the next set of cellular advancements (5G). In particular, the authors explore usages for future 5G communications, key metrics for these usages with their target requirements, and network architectures and enabling technologies to meet 5G requirements. The objective is to provide a comprehensive guide on the emerging trends in mobile applications, and the challenges of supporting such applications with 4G technologies.




Opportunities in 5G Networks


Book Description

Opportunities in 5G Networks: A Research and Development Perspective uniquely focuses on the R&D technical design of 5th-generation (5G) networks. It is written and edited by researchers and engineers who are world-renown experts in the design of 5G networks. The book consists of four sections: The first section explains what 5G is, what its re







4G: LTE/LTE-Advanced for Mobile Broadband


Book Description

This book focuses on LTE with full updates including LTE-Advanced (Release-11) to provide a complete picture of the LTE system. Detailed explanations are given for the latest LTE standards for radio interface architecture, the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance. Key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, radio resource management and protocols, and different radio network architectures. Their role and use in the context of mobile broadband access in general is explained, giving both a high-level overview and more detailed step-by-step explanations. This book is a must-have resource for engineers and other professionals in the telecommunications industry, working with cellular or wireless broadband technologies, giving an understanding of how to utilize the new technology in order to stay ahead of the competition. New to this edition: - In-depth description of CoMP and enhanced multi-antenna transmission including new reference-signal structures and feedback mechanisms - Detailed description of the support for heterogeneous deployments provided by the latest 3GPP release - Detailed description of new enhanced downlink control-channel structure (EPDDCH) - New RF configurations including operation in non-contiguous spectrum, multi-bands base stations and new frequency bands - Overview of 5G as a set of well-integrated radio-access technologies, including support for higher frequency bands and flexible spectrum management, massive antenna configurations, and ultra-dense deployments - Covers a complete update to the latest 3GPP Release-11 - Two new chapters on HetNet, covering small cells/heterogeneous deployments, and CoMP, including Inter-site coordination - Overview of current status of LTE release 12 including further enhancements of local-area, CoMP and multi-antenna transmission, Machine-type-communication, Device-to-device communication