A Beginner's Guide to Mathematical Logic


Book Description

Combining stories of great writers and philosophers with quotations and riddles, this original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2014 edition.




An Introduction to Mathematical Logic


Book Description

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.




A Beginner's Further Guide To Mathematical Logic


Book Description

'A wealth of examples to which solutions are given permeate the text so the reader will certainly be active.'The Mathematical GazetteThis is the final book written by the late great puzzle master and logician, Dr. Raymond Smullyan.This book is a sequel to my Beginner's Guide to Mathematical Logic.The previous volume deals with elements of propositional and first-order logic, contains a bit on formal systems and recursion, and concludes with chapters on Gödel's famous incompleteness theorem, along with related results.The present volume begins with a bit more on propositional and first-order logic, followed by what I would call a 'fein' chapter, which simultaneously generalizes some results from recursion theory, first-order arithmetic systems, and what I dub a 'decision machine.' Then come five chapters on formal systems, recursion theory and metamathematical applications in a general setting. The concluding five chapters are on the beautiful subject of combinatory logic, which is not only intriguing in its own right, but has important applications to computer science. Argonne National Laboratory is especially involved in these applications, and I am proud to say that its members have found use for some of my results in combinatory logic.This book does not cover such important subjects as set theory, model theory, proof theory, and modern developments in recursion theory, but the reader, after studying this volume, will be amply prepared for the study of these more advanced topics.




A Profile of Mathematical Logic


Book Description

This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.




A Concise Introduction to Mathematical Logic


Book Description

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.




A Tour Through Mathematical Logic


Book Description

A Tour Through Mathematical Logic provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.




A Mathematical Introduction to Logic


Book Description

A Mathematical Introduction to Logic




An Introduction to Formal Logic


Book Description

Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.




A Friendly Introduction to Mathematical Logic


Book Description

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.




First Course in Mathematical Logic


Book Description

Rigorous introduction is simple enough in presentation and context for wide range of students. Symbolizing sentences; logical inference; truth and validity; truth tables; terms, predicates, universal quantifiers; universal specification and laws of identity; more.