A Beginner's Guide To Mathematica


Book Description

Because of its large command structure and intricate syntax, Mathematica can be difficult to learn. Wolfram's Mathematica manual, while certainly comprehensive, is so large and complex that when trying to learn the software from scratch -- or find answers to specific questions -- one can be quickly overwhelmed. A Beginner's Guide to Mathemat




The Beginner's Guide to MATHEMATICA ®, Version 4


Book Description

This hugely successful textbook covers all the new features of Mathematica Version 4.




Hands-on Start to Wolfram Mathematica


Book Description

For more than 25 years, Mathematica has been the principal computation environment for millions of innovators, educators, students, and others around the world. This book is an introduction to Mathematica. The goal is to provide a hands-on experience introducing the breadth of Mathematica with a focus on ease of use. Readers get detailed instruction with examples for interactive learning and end-of-chapter exercises. Each chapter also contains authors' tips from their combined 50+ years of Mathematica use.




An Elementary Introduction to the Wolfram Language


Book Description

The Wolfram Language represents a major advance in programming languages that makes leading-edge computation accessible to everyone. Unique in its approach of building in vast knowledge and automation, the Wolfram Language scales from a single line of easy-to-understand interactive code to million-line production systems. This book provides an elementary introduction to the Wolfram Language and modern computational thinking. It assumes no prior knowledge of programming, and is suitable for both technical and non-technical college and high-school students, as well as anyone with an interest in the latest technology and its practical application.




Calculus Using Mathematica


Book Description

Calculus Using Mathematica: Scientific Projects and Mathematical Background is a companion to the core text, Calculus Using Mathematica. The book contains projects that illustrate applications of calculus to a variety of practical situations. The text consists of 14 chapters of various projects on how to apply the concepts and methodologies of calculus. Chapters are devoted to epidemiological applications; log and exponential functions in science; applications to mechanics, optics, economics, and ecology. Applications of linear differential equations; forced linear equations; differential equations from vector geometry; and to chemical reactions are presented as well. College students of calculus will find this book very helpful.




Sage Beginner's Guide


Book Description

Annotation Your work demands results, and you don't have time for tedious, repetitive mathematical tasks. Sage is a free, open-source software package that automates symbolic and numerical calculations with the power of the Python programming language, so you can focus on the analytical and creative aspects of your work or studies. Sage Beginner's Guide shows you how to do calculations with Sage. Each concept is illustrated with a complete example that you can use as a starting point for your own work. You will learn how to use many of the functions that are built in to Sage, and how to use Python to write sophisticated programs that utilize the power of Sage. This book starts by showing you how to download and install Sage, and introduces the command-line interface and the graphical notebook interface. It also includes an introduction to Python so you can start programming in Sage. Every major concept is illustrated with a practical example. After learning the fundamentals of variables and functions in Sage, you will learn how to symbolically simplify expressions, solve equations, perform integrals and derivatives, and manipulate vectors and matrices. You will learn how Sage can produce numerous kinds of plots and graphics. The book will demonstrate numerical methods in Sage, and explain how to use object-oriented programming to improve your code. Sage Beginner's Guide will give you the tools you need to unlock the full potential of Sage for simplifying and automating mathematical computing. Effectively use Sage to eliminate tedious algebra, speed up numerical calculations, implement algorithms and data structures, and illustrate your work with publication-quality plots and graphics.




The Mathematica GuideBook for Programming


Book Description

This comprehensive, detailed reference provides readers with both a working knowledge of Mathematica in general and a detailed knowledge of the key aspects needed to create the fastest, shortest, and most elegant implementations possible. It gives users a deeper understanding of Mathematica by instructive implementations, explanations, and examples from a range of disciplines at varying levels of complexity. The three volumes -- Programming, Graphics, and Mathematics, total 3,000 pages and contain more than 15,000 Mathematica inputs, over 1,500 graphics, 4,000+ references, and more than 500 exercises. This first volume begins with the structure of Mathematica expressions, the syntax of Mathematica, its programming, graphic, numeric and symbolic capabilities. It then covers the hierarchical construction of objects out of symbolic expressions, the definition of functions, the recognition of patterns and their efficient application, program flows and program structuring, and the manipulation of lists. An indispensible resource for students, researchers and professionals in mathematics, the sciences, and engineering.




Mathematica DeMYSTiFied


Book Description

Need to learn MATHEMATICA? Problem SOLVED! Take full advantage of all the powerful capabilities of Mathematica with help from this hands-on guide. Filled with examples and step-by-step explanations, Mathematica Demystified takes you from your very first calculation all the way to plotting complex fractals. Using an intuitive format, this book explains the fundamentals of Mathematica up front. Learn how to define functions, create 2-D graphs of functions, write basic programs, and use modules. You'll move on to 3-D graphics, calculus, polynomial, linear, and differential equations, dynamical systems, and fractals. Hundreds of examples with concise explanations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce learning. This self-teaching guide offers: A quick way to get up and running on Mathematica Coverage of Mathematica 6 and 7 Tips for avoiding and correcting syntax errors Details on creating slideshow presentations of your work No unnecessary technical jargon A time-saving approach to performing better on an exam or at work! Simple enough for a beginner, but challenging enough for an advanced user, Mathematica Demystified is your shortcut to mastering this fully integrated technical computing software.




The Mathematica GuideBook for Numerics


Book Description

Provides the reader with working knowledge of Mathematica and key aspects of Mathematica's numerical capabilities needed to deal with virtually any "real life" problem Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www.MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations




Mathematica Cookbook


Book Description

Mathematica Cookbook helps you master the application's core principles by walking you through real-world problems. Ideal for browsing, this book includes recipes for working with numerics, data structures, algebraic equations, calculus, and statistics. You'll also venture into exotic territory with recipes for data visualization using 2D and 3D graphic tools, image processing, and music. Although Mathematica 7 is a highly advanced computational platform, the recipes in this book make it accessible to everyone -- whether you're working on high school algebra, simple graphs, PhD-level computation, financial analysis, or advanced engineering models. Learn how to use Mathematica at a higher level with functional programming and pattern matching Delve into the rich library of functions for string and structured text manipulation Learn how to apply the tools to physics and engineering problems Draw on Mathematica's access to physics, chemistry, and biology data Get techniques for solving equations in computational finance Learn how to use Mathematica for sophisticated image processing Process music and audio as musical notes, analog waveforms, or digital sound samples