Artificial Immune Systems


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Artificial Immune Systems, ICARIS 2012, held in Taormia, Italy, in August 2012. The 19 revised selected papers presented were carefully reviewed and selected for inclusion in this book. In addition 4 papers of the workshop on bio and immune inspired algorithms and models for multi-level complex systems are included in this volume. Artificial immune systems (AIS) is a diverse and maturing area of research that bridges the disciplines of immunology, biology, medical science, computer science, physics, mathematics and engineering. The scope of AIS ranges from modelling and simulation of the immune system through to immune-inspired algorithms and in silico, in vitro and in vivo solutions.




High Performance Programming for Soft Computing


Book Description

This book examines the present and future of soft computer techniques. It explains how to use the latest technological tools, such as multicore processors and graphics processing units, to implement highly efficient intelligent system methods using a general purpose computer.




A Biologist's Guide to Mathematical Modeling in Ecology and Evolution


Book Description

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available




Handbook of Natural Computing


Book Description

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.




Dubois' Lupus Erythematosus and Related Syndromes - E-Book


Book Description

For more than 50 years, Dubois' Lupus Erythematosus and Related Syndromes has been recognized internationally as the go-to clinical reference on lupus and other connective tissue diseases. From basic scientific principles to practical points of clinical management, the 10th edition provides extensive, authoritative coverage of systemic lupus erythematosus (SLE) and its related diseases in a logical, clearly written, user-friendly manner. It's an ideal resource for rheumatologists and internal medicine practitioners who need a comprehensive clinical reference on all aspects of SLE, connective tissue diseases, and the antiphospholipid syndromes. - Provides complete clinical coverage of every aspect of cutaneous and systemic lupus erythematosus, including definitions, pathogenesis, autoantibodies, clinical and laboratory features, management, prognosis, and patient education. - Includes significant new content throughout: a new chapter on the endocrine system and hormones; newly distinct chapters on the heart and lung; new content on social disparities in lupus, clinical presentation of nephritis, and pulmonary hypertension; a new concluding chapter on future directions in the field; new basic science coverage of the microbiome, autoinflammatory, and monogenic lupus; and new coverage of diversity, inclusion, gender, compliance, and adherence. - Offers a fresh perspective from two new associate editors and many new authors with representation from 30 countries. - Contains an up-to-date overview of significant advances in cellular, molecular, and genetic technologies, including genetic advancements in identifying at-risk patients. - Discusses the clinical management of related disorders such as Sjogren's syndrome, scleroderma, polymyositis, and antiphospholipid syndrome (APS). - Presents the knowledge and expertise of international contributors to provide new global perspectives on manifestations, diagnosis, and treatment. - Features a vibrant, full-color format, with graphs, algorithms, differential diagnosis comparisons, new and improved figures, and schematic diagrams throughout. - Additional digital ancillary content may publish up to 6 weeks following the publication date.




Modeling and Simulation in Python


Book Description

Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.




Thinking in Systems


Book Description

The classic book on systems thinking—with more than half a million copies sold worldwide! "This is a fabulous book... This book opened my mind and reshaped the way I think about investing."—Forbes "Thinking in Systems is required reading for anyone hoping to run a successful company, community, or country. Learning how to think in systems is now part of change-agent literacy. And this is the best book of its kind."—Hunter Lovins In the years following her role as the lead author of the international bestseller, Limits to Growth—the first book to show the consequences of unchecked growth on a finite planet—Donella Meadows remained a pioneer of environmental and social analysis until her untimely death in 2001. Thinking in Systems is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life. Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking. While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner. In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.







Industrial System Engineering for Drones


Book Description

Explore a complex mechanical system where electronics and mechanical engineers work together as a cross-functional team. Using a working example, this book is a practical “how to” guide to designing a drone system. As system design becomes more and more complicated, systematic, and organized, there is an increasingly large gap in how system design happens in the industry versus what is taught in academia. While the system design basics and fundamentals mostly remain the same, the process, flow, considerations, and tools applied in industry are far different than that in academia. Designing Drone Systems takes you through the entire flow from system conception to design to production, bridging the knowledge gap between academia and the industry as you build your own drone systems. What You’ll LearnGain a high level understanding of drone systems Design a drone systems and elaborating the various aspects and considerations of design Review the principles of the industrial system design process/flow, and the guidelines for drone systems Look at the challenges, limitations, best practices, and patterns of system design Who This Book Is For Primarily for beginning or aspiring system design experts, recent graduates, and system design engineers. Teachers, trainers, and system design mentors can also benefit from this content.




Data Mining and Applications in Genomics


Book Description

Data Mining and Applications in Genomics contains the data mining algorithms and their applications in genomics, with frontier case studies based on the recent and current works at the University of Hong Kong and the Oxford University Computing Laboratory, University of Oxford. It provides a systematic introduction to the use of data mining algorithms as an investigative tool for applications in genomics. Data Mining and Applications in Genomics offers state of the art of tremendous advances in data mining algorithms and applications in genomics and also serves as an excellent reference work for researchers and graduate students working on data mining algorithms and applications in genomics.