Book Description
Originally published: New York: Rinehart and Winston, 1961.
Author : Richard Bellman
Publisher : Courier Corporation
Page : 100 pages
File Size : 10,37 MB
Release : 2013-01-01
Category : Mathematics
ISBN : 0486492958
Originally published: New York: Rinehart and Winston, 1961.
Author : Maruti Ram Murty
Publisher : American Mathematical Soc.
Page : 188 pages
File Size : 18,19 MB
Release : 1993-01-01
Category : Mathematics
ISBN : 9780821870112
This book contains lectures on theta functions written by experts well known for excellence in exposition. The lectures represent the content of four courses given at the Centre de Recherches Mathematiques in Montreal during the academic year 1991-1992, which was devoted to the study of automorphic forms. Aimed at graduate students, the book synthesizes the classical and modern points of view in theta functions, concentrating on connections to number theory and representation theory. An excellent introduction to this important subject of current research, this book is suitable as a text in advanced graduate courses.
Author : Shaun Cooper
Publisher : Springer
Page : 696 pages
File Size : 39,21 MB
Release : 2017-06-12
Category : Mathematics
ISBN : 3319561723
Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.
Author : Richard Bellman
Publisher : Courier Corporation
Page : 100 pages
File Size : 10,85 MB
Release : 2013-11-05
Category : Mathematics
ISBN : 0486782832
Brief but intriguing monograph on the theory of elliptic functions, written by a prominent mathematician. Spotlights high points of the fundamental regions and illustrates powerful, versatile analytic methods. 1961 edition.
Author : Shrawan Kumar
Publisher : Cambridge University Press
Page : 539 pages
File Size : 48,40 MB
Release : 2021-11-25
Category : Mathematics
ISBN : 1316518167
This book gives a complete proof of the Verlinde formula and of its connection to generalized theta functions.
Author : David Mumford
Publisher : Springer Science & Business Media
Page : 248 pages
File Size : 16,73 MB
Release : 2007-06-25
Category : Mathematics
ISBN : 0817645772
This volume is the first of three in a series surveying the theory of theta functions. Based on lectures given by the author at the Tata Institute of Fundamental Research in Bombay, these volumes constitute a systematic exposition of theta functions, beginning with their historical roots as analytic functions in one variable (Volume I), touching on some of the beautiful ways they can be used to describe moduli spaces (Volume II), and culminating in a methodical comparison of theta functions in analysis, algebraic geometry, and representation theory (Volume III).
Author : Heng Huat Chan
Publisher : de Gruyter
Page : 0 pages
File Size : 43,66 MB
Release : 2020
Category : Elliptic functions
ISBN : 9783110540710
This book presents several results on elliptic functions and Pi, using Jacobi's triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan's work on Pi. The included exercises make it ideal for both classroom use and self-study.
Author : Michael C. Berg
Publisher : John Wiley & Sons
Page : 118 pages
File Size : 22,57 MB
Release : 2011-09-30
Category : Mathematics
ISBN : 1118031199
A unique synthesis of the three existing Fourier-analytictreatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923,then recast by Weil in 1964 into the language of unitary grouprepresentations. The analytic proof of the general n-th order caseis still an open problem today, going back to the end of Hecke'sfamous treatise of 1923. The Fourier-Analytic Proof of QuadraticReciprocity provides number theorists interested in analyticmethods applied to reciprocity laws with a unique opportunity toexplore the works of Hecke, Weil, and Kubota. This work brings together for the first time in a single volume thethree existing formulations of the Fourier-analytic proof ofquadratic reciprocity. It shows how Weil's groundbreakingrepresentation-theoretic treatment is in fact equivalent to Hecke'sclassical approach, then goes a step further, presenting Kubota'salgebraic reformulation of the Hecke-Weil proof. Extensivecommutative diagrams for comparing the Weil and Kubotaarchitectures are also featured. The author clearly demonstrates the value of the analytic approach,incorporating some of the most powerful tools of modern numbertheory, including adèles, metaplectric groups, andrepresentations. Finally, he points out that the critical commonfactor among the three proofs is Poisson summation, whosegeneralization may ultimately provide the resolution for Hecke'sopen problem.
Author : Serge Lang
Publisher : Springer Science & Business Media
Page : 178 pages
File Size : 31,94 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461257409
Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.
Author : R?zvan Gelca
Publisher : World Scientific
Page : 469 pages
File Size : 19,58 MB
Release : 2014
Category : Mathematics
ISBN : 9814520586
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian ChernOCoSimons theory. Moreover, the construction of abelian ChernOCoSimons theory is based entirely on quantum mechanics, and not on quantum field theory as it is usually done. Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is a self-contained, unified presentation. It is suitable for an advanced graduate course, as well as for self-study. Contents: Some Historical Facts; A Quantum Mechanical Prototype; Surfaces and Curves; The Theta Functions Associated to a Riemann Surface; From Theta Functions to Knots; Some Results About 3- and 4-Dimensional Manifolds; The Discrete Fourier Transform and Topological Quantum Field Theory; Theta Functions and Quantum Groups; An Epilogue OCo Abelian ChernOCoSimons Theory. Readership: Graduate students and young researchers with an interest in complex analysis, mathematical physics, algebra geometry and low dimensional topology.