A Statistical Approach to Understanding and Predicting Tropical Storm Formation in the East Pacific Basin


Book Description

Despite its spatial confines, the east Pacific basin is one of the most active basins in the world for tropical cyclone (TC) genesis. While the TCs that form in the basin have important implications for Central America and the southwestern U.S., relatively little research (compared to other tropical basins) has been done on eastern Pacific tropical cyclogenesis. The present study uses two statistical techniques - linear discriminant analysis (LDA) and a Bayesian probabilistic model to identify those variables that are associated with the development of nascent vortices in the east Pacific and uses them to predict tropical storm formation for lead times out to 48 hours. All nascent vortices that last for a minimum of 48 hours and form during the 2001-2009 "peak" hurricane seasons (July-September) are considered in the study. An initial set of 27 spatially averaged variables is considered as potential predictors for the statistical models. Results from both the LDA algorithm and Bayes probabilistic model show that a number of predictors improve the forecast skill of both models. These predictors include the 900hPa relative vorticity, latitude of the vortex, 900hPa deformation fields, 900hPa-500hPa relative humidity, 900hPa zonal wind, and the 900hPa-200hPa equatorward vertical shear of the meridional wind. Using the aforementioned predictors as a basis, a composite-based conceptual model for environmental elements that favor tropical storm formation is constructed to explain the physical mechanisms of the process. In conjunction with the statistical and composite-based models, Tropical Storm Gil (a 2007 storm that is accurately forecast by the statistical models) and Tropical Storm Enrique (a 2009 case that is poorly forecast) are used to highlight the strengths and weaknesses of each model.




Storm and Cloud Dynamics


Book Description

Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate







Global Perspectives On Tropical Cyclones: From Science To Mitigation


Book Description

This book is a completely rewritten, updated and expanded new edition of the original Global Perspectives on Tropical Cyclones published in 1995. It presents a comprehensive review of the state of science and forecasting of tropical cyclones together with the application of this science to disaster mitigation, hence the tag: From Science to Mitigation.Since the previous volume, enormous progress in understanding tropical cyclones has been achieved. These advances range from the theoretical through to ever more sophisticated computer modeling, all underpinned by a vast and growing range of observations from airborne, space and ocean observation platforms. The growth in observational capability is reflected by the inclusion of three new chapters on this topic. The chapter on the effects of climate change on tropical cyclone activity is also new, and appropriate given the recent intense debate on this issue. The advances in the understanding of tropical cyclones which have led to significant improvements in forecasting track, intensity, rainfall and storm surge, are reviewed in detail over three chapters. For the first time, a chapter on seasonal prediction is included. The book concludes with an important chapter on disaster mitigation, which is timely given the enormous loss of life in recent tropical cyclone disasters.World Scientific Series on Asia-Pacific Weather and Climate is indexed in SCOPUS.




Cross-Equatorial Influences of a South American Cold Surge on the Development of Two Eastern North Pacific Tropical Cyclones


Book Description

Considerable research has been conducted on the environmental conditions necessary for tropical cyclone genesis. Primarily this research has centered around the climatic requirements necessary for development. While genesis parameters are very useful in a climatological sense, it is still difficult to predict the specific location and time of tropical cyclone formation. One approach to understanding this problem is to identify a feature or a synoptic situation that is common in regions of tropical cyclone genesis and conduct an intense diagnostic study to determine how this feature or synoptic situation relates to the development of tropical cyclones. Love (1982) found that about 75% of the 74 genesis events studied (in longitudes 100 E to 180 E) are associated with an equatorward surge of cold air in the opposing hemisphere. Thus, indicating that there appears to be a strong correlation between tropical cyclone genesis and cold surges. This thesis is a case study of such an event. In late May 1979 a severe cold front passed over South America. On the mornings of 31 May and 1 June four states in Brazil experienced the worst freeze since 1975. Simultaneously, two tropical cyclones developed off the west coast of Central America. The only time in recorded history that two cyclones have developed on the same day in May in this region. The objective of this research is to diagnose this case study to determine if the unusually strong South American cold surge was influential in the development of the two eastern North Pacific tropical cyclones. Theses. (jhd).










Global Perspectives on Tropical Cyclones


Book Description

Pt. I. Theory of tropical cyclones. ch. 1. Tropical cyclone structure and dynamics / Jeffrey D. Kepert. ch. 2. Tropical cyclone formation / Kevin J. Tory and William M. Frank. ch. 3. Air-sea interactions in tropical cyclones / Lynn K. Shay. ch. 4. Movement of tropical cyclones / Johnny C.L. Chan. ch. 5. The extratropical transition of tropical cyclones : structural characteristics, downstream impacts, and forecast challenges / Patrick A. Harr -- pt. II. Observations of tropical cyclones. ch. 6. Observing and analyzing the near-surface wind field in tropical cyclones / Mark D. Powell. ch. 7. Satellite observations of tropical cyclones / Christopher Velden and Jeffrey Hawkins. ch. 8. Aircraft observations of tropical cyclones / Sim D. Aberson [und weitere] -- pt. III. Climate variations of tropical cyclone activity. ch. 9. Tropical cyclones and climate change : a review / Thomas Knutson, Chris Landsea and Kerry Emanuel -- pt. IV. Forecasting of tropical cyclones. ch. 10. Track and structure forecasts of tropical cyclones / Julian Heming and Jim Goerss. ch. 11. The influence of natural climate variability on tropical cyclones, and seasonal forecasts of tropical cyclone activity / Suzana J. Camargo [und weitere] -- pt. V. Hydrological aspects of tropical cyclones. ch. 12. Storm surge modeling and applications in coastal areas / Shishir K. Dube [und weitere] -- pt. VI. Societal impacts of tropical cyclones. ch. 13. Disaster mitigation and societal impacts / David King, Jim Davidson and Linda Anderson-Berry




El Niño Southern Oscillation in a Changing Climate


Book Description

Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.