A Chemical Abundance Analysis of Stars Believed to be Metal Poor Members of the Galactic Stellar Thick Disk


Book Description

Galactic formation models have long sought to reproduce the observed chemical and kinematical properties of the Milky Way's stellar halo and disk. Recently it is the so-called "intermediate population", the stellar thick disk, that is driving advances in our understanding of the formation of spiral galaxies. The thick disk is kinematically more like the thin disk than the halo, for all the thick disk has a velocity dispersion twice that of the thin disk and rotates ~40 km/s more slowly. It is generally accepted that the thick disk's metallicity distribution function peaks at a lower metallicity than the thin disk but at higher metallicity than the halo. The lower bound of the thick disk is still uncertain, as many observational studies have found only a few thick disk candidate stars or clusters that are more metal poor than (Fe/H)=1. Beers et al. (2002) have so far proposed the largest sample of metal poor thick disk candidates, presenting 9 stars at (Fe/H)= -1.2 or lower and 46 more stars at (Fe/H)= -1 or lower, all of which are believed to belong to the thick disk. Beers et al. (2002) present possible thick disk stars as metal poor as (Fe/H)~ -2.5, roughly 1 dex lower than is suggested by current Galactic formation models (Brook et al., 2005). This study is a high-resolution spectroscopic follow-up of 29 of the stars Beers et al. (2002) and Chiba & Beers (2000) identify as potential metal poor members of the thick disk and an additional 40 stars from the cannonical thick disk, halo, and thin disk. None of the very metal-poor stars identified by Beers et al. (2002) can be confirmed as members of the thick disk and many are not metal poor at all. Only two stars more metal poor than (Fe/H)= 1.2 retain their thick disk membership. These two stars exhibit some of the chemical characteristics of the cannonical thick disk: high [alpha]-element abundances and a relatively low s--/r-- process element ratio. Also of interest are six stars with thin disk kinematic signatures but thick disk [alpha]-element abundances. That only a small number of metal poor thick disk stars could be confirmed in this study indicates that the thick disk is neither as populous nor as metal poor as has been proposed by Beers et al. (2002).




Planets, Stars and Stellar Systems


Book Description

This is volume 5 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Galactic Structure and Stellar Populations”, edited by Gerard F. Gilmore, presents accessible review chapters on Stellar Populations, Chemical Abundances as Population Tracers, Metal-Poor Stars and the Chemical Enrichment of the Universe, The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations, The Galactic Nucleus, The Galactic Bulge, Open Clusters and Their Role in the Galaxy, Star Counts and the Nature of Galactic Thick Disk, The Infrared Galaxy, Interstellar PAHs and Dust, Galactic Neutral Hydrogen, High-Velocity Clouds, Magnetic Fields in Galaxies, Astrophysics of Galactic Charged Cosmic Rays, Gamma-Ray Emission of Supernova Remnants and the Origin of Galactic Cosmic Rays, Galactic Distance Scales, Globular Cluster Dynamical Evolution, Dynamics of Disks and Warps, Mass Distribution and Rotation Curve in the Galaxy, Dark Matter in the Galactic Dwarf Spheroidal Satellites, and History of Dark Matter in Galaxies. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.




Chemical Abundances in the Universe


Book Description

Session I : Primordial nucleosynthesis and the first stars in the Universe -- Session II : First stars in the Galaxy -- Session III : Chemical abundances in the high red-shift Universe -- Session IV : Chemical abundance constraints on mass assembly and star formation in local galaxies and the Milky Way -- Session V : Extrasolar planets: the chemical abundance connection -- Session VI : Abundance surveys and projects in the era of future large telescopes.




Chemical Abundances in Carbon-enhanced Metal-poor Stars


Book Description

Abstract: Metal-poor stars in the Galactic halo were born during the first few generations following the Big Bang, and thus provide key insights regarding conditions in the early Universe. Carbon-enhanced metal-poor (CEMP) stars, a subset of this population, are of even further interest because of their peculiar elemental abundance patterns. We studied high-resolution spectra of ten CEMP stars to learn more about the sources of their carbon excess, and now have preliminary abundances for up to 29 elements in our sample. Carbon enhancement in the stellar atmospheres was taken into consideration when conducting the abundance analysis, but did not appear to have a significant effect on derived abundances. Comparison of heavy element abundance ratios to the solar system pattern will be used to study nucleosynthesis at extremely low metallicities.







Local Group Cosmology


Book Description

Aimed at graduate students and young researchers, this volume presents observational techniques, tools, and models for studying Local Group galaxies.




Chemical Evolution of Galaxies


Book Description

The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of the chemical evolution of the Milky Way, spheroidal galaxies, irregular galaxies and of cosmic chemical evolution. The aim of this book is to provide an introduction to students as well as to amend our present ideas in research; the book also summarizes the efforts made by authors in the past several years in order to further future research in the field.




Anglo-Australian Observatory


Book Description




Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project


Book Description

The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) project aims to characterize the nature of the early universe through the study of metal-poor stars in the stellar halo of the galaxy. Once completed, this will be the largest set of abundances determined for metal-poor stars from high resolution spectra. In this paper, we present chemical abundances and trends of eleven elements for the first ~80 stars of the ~500 star study. These 80 stars serve as a pilot sample to test the automated stellar parameter and abundance determination pipeline newly developed for the CASH project called CASHCODE. Among the pilot sample, two stars with [Fe/H]




New Light on Dark Stars


Book Description

There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs and extrasolar planets, including both the latest observational results and theoretical work.