Materials for Lithium-Ion Batteries


Book Description

A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.




Materials for Energy Conversion Devices


Book Description

As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources.The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power generation, ionic conductors and new types of fuel cell. There are also chapters on the use of such materials in the immobilisation of nuclear waste and as electrochemical gas sensors for emission control.With its distinguished editors and international team of contributors, Materials for energy conversion devices is a standard reference for all those researching and developing a new generation of materials and technologies for our energy need. - Detailed coverage of solar energy and thermoelectric conversion - Comprehensive survey of new developments in this exciting field - Edited by leading experts in the field with contributions from an international team of authors




Fast Ion Transport in Solids


Book Description

The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.




Hard X-ray Photoelectron Spectroscopy (HAXPES)


Book Description

This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.




Polymerized Ionic Liquids


Book Description

The series covers the fundamentals and applications of different smart material systems from renowned international experts.




The Chemistry of Metal-Organic Frameworks


Book Description

Providing vital knowledge on the design and synthesis of specific metal-organic framework (MOF) classes as well as their properties, this ready reference summarizes the state of the art in chemistry. Divided into four parts, the first begins with a basic introduction to typical cluster units or coordination geometries and provides examples of recent and advanced MOF structures and applications typical for the respective class. Part II covers recent progress in linker chemistries, while special MOF classes and morphology design are described in Part III. The fourth part deals with advanced characterization techniques, such as NMR, in situ studies, and modelling. A final unique feature is the inclusion of data sheets of commercially available MOFs in the appendix, enabling experts and newcomers to the field to select the appropriate MOF for a desired application. A must-have reference for chemists, materials scientists, and engineers in academia and industry working in the field of catalysis, gas and water purification, energy storage, separation, and sensors.




Solid Electrolytes and Their Applications


Book Description

Defect solid state has been an area of major scientific and technological interest for the last few decades, the resulting important applications sus taining this interest. Solid electrolytes represent one area of defect solid state. The early work on defect ionic crystals and, in particular, the classic results of Kiukkola and Wagner in 1957 on stabilized zirconia and doped thoria laid the foundation for a systematic study of solid electrolytes. In the same year, Ure reported on the ionic conductivity of calcium fluoride. Since then, intense worldwide research has advanced our understanding of the defect structure and electrical conductivity of oxygen ion conductors such as doped zirconia and thoria and of the fluorides. This paved the way for thermo dynamic and kinetic studies using these materials and for technological applications based on the oxygen ion conductors. In the last few years we have seen the emergence of two new classes of solid electrolytes of great signifi cance: the fJ-aluminas and the silver ion conductors. The significance of these discoveries is that now (i) solid electrolytes are available which at room temperature exhibit electrical conductivity comparable to that of liquid electrolytes, (ii) useful electrical conductivity values can be achieved over a wide range of temperature and ambient conditions, and (iii) a wide variety of ions are available as conducting species in solids. The stage is therefore set for a massive effort at developing applications.




Materials for Solid State Batteries


Book Description

Solid state batteries have been prepared from a wide range of electrolyte materials. Lithium, silver and copper electrolytes are used in the preparation of microbatteries. This article in intended to provide guidelines for the choice of material in the preparation of batteries. The current trend in the choice of materials is discussed.




Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers


Book Description

Metal–organic frameworks (MOFs) are crystalline porous materials constructed from metal ions/clusters and organic linkers, combining the merits of both organic and inorganic components. Due to high porosity, rich functionalities, well-defined open channels and diverse structures, MOFs show great potentials in field such as gas storage and separation, catalysis, and sensing. Combining them with polymers tunes their chemical, mechanical, electrical and optical properties, and endows MOFs with processability. Covalent organic frameworks (COFs) are crystalline porous materials built from organic molecular units with diverse structures and applications. Hybrid materials with intriguing properties can be achieved by appropriate preparation methods and careful selection of MOFs/COFs and polymers, broadening their potential applications. This book documents the latest research progress in MOF/COF-polymer hybrid materials and reviews and summarises hybridization strategies to achieve MOF/COF polymeric composites. It also introduces various applications and potential applicable scenarios of hybrid MOF/COF polymers. Hybrid Metal–Organic Framework and Covalent Organic Framework Polymers offers an overview to readers who are new to this field, and will appeal to graduate students and researchers working on porous materials, polymers, hybrid materials, and supramolecular chemistry.




Atomic Layer Deposition of Nanostructured Materials


Book Description

Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.