A Commentary on Thermodynamics


Book Description

The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.




A Commentary on Thermodynamics


Book Description

The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.







Commentary on the Principles of Thermodynamics by Pierre Duhem


Book Description

Pierre Duhem (1861–1916) held the chair of theoretical physics at Bordeaux from 1894 to his death. He established a reputation in both the history and philosophy of science as well as in science itself (physics and physical chemistry). Much of his work in the first two areas has been translated into English, but little of his technical scientific work. The present volume contains early work of Duhem’s illustrating his interest in the rigorous development of physical theory for which he is famous. It opens with what was the first critical discussion of Gibbs’ groundbreaking "On the Equilibrium of Heterogeneous Substances" (1876-8), where Duhem addressed the problem that, as he put it, "Mathematicians regret that the principles of Thermodynamics should have been developed in general with so little precision that the same proposition can be regarded by some as a consequence, and by others as a negation, of these principles". The other papers, forming a three-part series, pursue this project of putting the foundations of thermodynamics on a clearer and more secure basis. This book will be of interest to scholars in history and philosophy of science, especially those interested in the development of physical chemistry and the work of Pierre Duhem.




Thermodynamics


Book Description

The role of thermodynamics in modern physics is not just to provide an approximate treatment of large thermal systems, but, more importantly, to provide an organising set of ideas. Thermodynamics: A complete undergraduate course presents thermodynamics as a self-contained and elegant set of ideas and methods. It unfolds thermodynamics for undergraduate students of physics, chemistry or engineering, beginning at first year level. The book introduces the necessary mathematical methods, assuming almost no prior knowledge, and explains concepts such as entropy and free energy at length, with many examples. This book aims to convey the style and power of thermodynamic reasoning, along with applications such as Joule-Kelvin expansion, the gas turbine, magnetic cooling, solids at high pressure, chemical equilibrium, radiative heat exchange and global warming, to name a few. It mentions but does not pursue statistical mechanics, in order to keep the logic clear.




Thermodynamics


Book Description

This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory's approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relation between theory and experiment should provide a reader with a more intuitive understanding of the basic principles.Graduate students and professional chemists in physical chemistry and inorganic chemistry, as well as graduate students and professionals in physics who wish to acquire a more sophisticated overview of thermodynamics and related subject matter will find this book extremely helpful. - Takes the reader through various steps to understanding - Review of fundamentals - Development of subject matter - Applications in a variety of disciplines




An Introduction to Statistical Mechanics and Thermodynamics


Book Description

This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.




Discover Entropy And The Second Law Of Thermodynamics: A Playful Way Of Discovering A Law Of Nature


Book Description

This is a sequel to the author's book entitled “Entropy Demystified” (Published by World Scientific, 2007). The aim is essentially the same as that of the previous book by the author: to present Entropy and the Second Law as simple, meaningful and comprehensible concepts. In addition, this book presents a series of “experiments” which are designed to help the reader discover entropy and the Second Law. While doing the experiments, the reader will encounter three most fundamental probability distributions featuring in Physics: the Uniform, the Boltzmann and the Maxwell-Boltzmann distributions. In addition, the concepts of entropy and the Second Law will emerge naturally from these experiments without a tinge of mystery. These concepts are explained with the help of a few familiar ideas of probability and information theory.The main “value” of the book is to introduce entropy and the Second Law in simple language which renders it accessible to any reader who can read and is curious about the basic laws of nature. The book is addressed to anyone interested in science and in understanding natural phenomenon. It will afford the reader the opportunity to discover one of the most fundamental laws of physics — a law that has resisted complete understanding for over a century. The book is also designed to be enjoyable.There is no other book of its kind (except “Entropy Demystified” by the same author) that offers the reader a unique opportunity to discover one of the most profound laws — sometimes viewed as a mysterious — while comfortably playing with familiar games. There are no pre-requisites expected from the readers; all that the reader is expected to do is to follow the experiments or imagine doing the experiments and reach the inevitable conclusions.




Notes On Thermodynamics: Hot Oolong Cools


Book Description

This title is a supplement to lectures and tutorials in a Thermodynamics course and also serves as a guide to more comprehensive texts. Rather than merely hurrying through the principles and then dealing with applications, the book presents the scientific method by discussing the science of thermodynamics starting from empirical observations that are relatable to students. For example, the book uses everyday experiences, such as a cup of hot tea cooling spontaneously, to arrive at the Second Law and Entropy through the idea of the heat engine. All the fundamentals are covered and illustrated with examples that resonate with the broad concerns and interests of students who take STEM classes today. The book examines the thermodynamics of hydrogen and gasoline engines, fuel cells versus the explosive combustion of hydrogen, how efficiently organisms and Spiderman utilize energy, the fizzing of a can of soda and decompression sickness, and how atmospheric carbon dioxide affects ocean pH and, worryingly, dissolves the calcium carbonate shells of marine animals, and also, what might happen if you inadvertently fall into a salt lake.Thermodynamics is presented as the macroscopic approach to understanding Nature when heat is involved. The book draws upon the idea of microstates where that clarifies the macroscopic ideas: entropy of mixing of gases is linked to Boltzmann and Gibbs' entropy formulations, thus motivating the formulation of the chemical potential of non-ideal systems in terms of their activities. Thermodynamics contains deep insight into the passage of Time. In the discussions of the Second Law the book highlights this, emphasizing that all the processes we observe in our universe are irreversible.Adopting an informal and readable style without compromising the rigour in this book, the goal is to help a broad audience of students appreciate the essential meaning of the Laws of Thermodynamics and to apply the fundamental framework at an elementary level.




Reflections on the Motive Power of Fire


Book Description

The title essay, along with other papers in this volume, laid the foundation of modern thermodynamics. Highly readable, "Reflections" contains no arguments that depend on calculus, examining the relation between heat and work in terms of heat in steam engines, air-engines, and an internal combustion machine. Translation of 1890 edition.