A Comparison of Ship Maneuvering Characteristics for Rudders and Podded Propulsors


Book Description

A comparison of a high speed container ship using a rudder versus a podded propulsor is made to study replacing a rudder with a pod. A mathematical model is altered to simulate a ship operating with a rudder and with a pod to maneuver. The model incorporates the nonlinear maneuvering equations and couples the surge and sway forces, yaw and roll moment, and the roll angle induced during a steady turn with varying rudder and pod angles. The model uses the hydrodynamic derivatives and coefficients for a high speed container ship. The equations are numerically integrated in order to predict the roll angle, sway and surge velocities, and the ship's position in the xy-plane. Both transient and steady state results are utilized to quantify the relative efficiency of each system. The results are used as a preliminary study into replacing a rudder on a ship with a podded propulsor. The results indicate that the ship responds faster and has a shorter turning radius with the pod at lower initial speeds and pod angles, while the rudder responds better at high speeds regardless of angle. Further research is necessary to study the effects of changing the pod's position and increasing the number of pods used.




Marine Propellers and Propulsion


Book Description

The early development of the screw propeller. Propeller geometry. The propeller environment. The ship wake field, propeller performance characteristics.







Naval Engineers Journal


Book Description




Marine Propellers and Propulsion


Book Description

Marine Propellers and Propulsion, Fourth Edition, offers comprehensive, cutting edge coverage to equip marine engineers, naval architects or anyone involved in propulsion and hydrodynamics with essential job knowledge. Propulsion technology is a complex, multidisciplinary topic with design, construction, operational and research implications. Drawing on experience from a long and varied career in consulting, research, design and technical investigation, John Carlton examines hydrodynamic theory, materials and mechanical considerations, and design, operation and performance. Connecting essential theory to practical problems in design, analysis and operational efficiency, the book is an invaluable resource, packed with hard-won insights, detailed specifications and data. - Features comprehensive coverage of marine propellers, fully updated and revised, with new chapters on propulsion in ice and high speed propellers - Includes enhanced content on full-scale trials, propeller materials, propeller blade vibration, operational problems and much more - Synthesizes otherwise disparate material on the theory and practice of propulsion technology from the past 40 years' development, including the latest developments in improving efficiency - Written by a leading expert on propeller technology, essential for students, marine engineers and naval architects involved in propulsion and hydrodynamics




The Maritime Engineering Reference Book


Book Description

The Maritime Engineering Reference Book is a one-stop source for engineers involved in marine engineering and naval architecture. In this essential reference, Anthony F. Molland has brought together the work of a number of the world's leading writers in the field to create an inclusive volume for a wide audience of marine engineers, naval architects and those involved in marine operations, insurance and other related fields. Coverage ranges from the basics to more advanced topics in ship design, construction and operation. All the key areas are covered, including ship flotation and stability, ship structures, propulsion, seakeeping and maneuvering. The marine environment and maritime safety are explored as well as new technologies, such as computer aided ship design and remotely operated vehicles (ROVs).Facts, figures and data from world-leading experts makes this an invaluable ready-reference for those involved in the field of maritime engineering.Professor A.F. Molland, BSc, MSc, PhD, CEng, FRINA. is Emeritus Professor of Ship Design at the University of Southampton, UK. He has lectured ship design and operation for many years. He has carried out extensive research and published widely on ship design and various aspects of ship hydrodynamics.* A comprehensive overview from best-selling authors including Bryan Barrass, Rawson and Tupper, and David Eyres* Covers basic and advanced material on marine engineering and Naval Architecture topics* Have key facts, figures and data to hand in one complete reference book







Marine Propulsors


Book Description

This book is a printed edition of the Special Issue "Marine Propulsors" that was published in JMSE




Maritime Technology and Engineering III


Book Description

Maritime Technology and Engineering 3 is a collection of papers presented at the 3rd International Conference on Maritime Technology and Engineering (MARTECH 2016, Lisbon, Portugal, 4-6 July 2016). The MARTECH Conferences series evolved from biannual national conferences in Portugal, thus reflecting the internationalization of the maritime sector. The keynote lectures and the papers, making up nearly 150 contributions, came from an international group of authors focused on different subjects in a variety of fields: Maritime Transportation, Energy Efficiency, Ships in Ports, Ship Hydrodynamics, Ship Structures, Ship Design, Ship Machinery, Shipyard Technology, afety & Reliability, Fisheries, Oil & Gas, Marine Environment, Renewable Energy and Coastal Structures. Maritime Technology and Engineering 3 will appeal to academics, engineers and professionals interested or involved in these fields.




Added Masses of Ship Structures


Book Description

Knowledge of added body masses that interact with fluid is necessary in various research and applied tasks of hydro- and aeromechanics: steady and unsteady motion of rigid bodies, total vibration of bodies in fluid, local vibration of the external plating of different structures. This reference book contains data on added masses of ships and various ship and marine engineering structures. Also theoretical and experimental methods for determining added masses of these objects are described. A major part of the material is presented in the format of final formulas and plots which are ready for practical use. The book summarises all key material that was published in both Russian and English-language literature. This volume is intended for technical specialists of shipbuilding and related industries. The author is one of the leading Russian experts in the area of ship hydrodynamics.