A Comparison of U.s. Geological Survey Three-dimensional Model Estimates of Groundwater Source Areas and Velocities to Independently Derived Estimates, Idaho National Laboratory and Vicinity, Idaho


Book Description

The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, evaluated a three-dimensional model of groundwater flow in the fractured basalts and interbedded sediments of the eastern Snake River Plain aquifer at and near the Idaho National Laboratory to determine if model-derived estimates of groundwater movement are consistent with (1) results from previous studies on water chemistry type, (2) the geochemical mixing at an example well, and (3) independently derived estimates of the average linear groundwater velocity. Simulated steady-state flow fields were analyzed using backward particle-tracking simulations that were based on a modified version of the particle tracking program MODPATH. Model results were compared to the 5-microgram-per-liter lithium contour interpreted to represent the transition from a water type that is primarily composed of tributary valley underflow and streamflow-infiltration recharge to a water type primarily composed of regional aquifer water. This comparison indicates several shortcomings in the way the model represents flow in the aquifer. The eastward movement of tributary valley underflow and streamflow-infiltration recharge is overestimated in the north-central part of the model area and underestimated in the central part of the model area. Model inconsistencies can be attributed to large contrasts in hydraulic conductivity between hydrogeologic zones.













Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water


Book Description

Interest in the use and development of our Nation's surface - and ground-water resources has increased significantly during the past 50 years. This work discusses field techniques for estimating water fluxes.













Groundwater around the World


Book Description

This book presents a unique and up-to-date summary of what is known about groundwater on our planet, from a global perspective and in terms of area-specific factual information. Unlike most textbooks on groundwater, it does not deal with theoretical principles, but rather with the overall picture that emerges as a result of countless observations,