Painting with Fire


Book Description

Painting with Fire shows how experiments with chemicals known to change visibly over the course of time transformed British pictorial arts of the long eighteenth century—and how they can alter our conceptions of photography today. As early as the 1670s, experimental philosophers at the Royal Society of London had studied the visual effects of dynamic combustibles. By the 1770s, chemical volatility became central to the ambitious paintings of Sir Joshua Reynolds, premier portraitist and first president of Britain’s Royal Academy of Arts. Valued by some critics for changing in time (and thus, for prompting intellectual reflection on the nature of time), Reynolds’s unstable chemistry also prompted new techniques of chemical replication among Matthew Boulton, James Watt, and other leading industrialists. In turn, those replicas of chemically decaying academic paintings were rediscovered in the mid-nineteenth century and claimed as origin points in the history of photography. Tracing the long arc of chemically produced and reproduced art from the 1670s through the 1860s, the book reconsiders early photography by situating it in relationship to Reynolds’s replicated paintings and the literal engines of British industry. By following the chemicals, Painting with Fire remaps familiar stories about academic painting and pictorial experiment amid the industrialization of chemical knowledge.




Sir Isaac Newton's Mathematical Principles of Natural Philosophy and His System of the World


Book Description

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1934.




The Scientific Revolution


Book Description

This scholarly and accessible study presents “a provocative new reading” of the late sixteenth- and seventeenth-century advances in scientific inquiry (Kirkus Reviews). In The Scientific Revolution, historian Steven Shapin challenges the very idea that any such a “revolution” ever took place. Rejecting the narrative that a new and unifying paradigm suddenly took hold, he demonstrates how the conduct of science emerged from a wide array of early modern philosophical agendas, political commitments, and religious beliefs. In this analysis, early modern science is shown not as a set of disembodied ideas, but as historically situated ways of knowing and doing. Shapin shows that every principle identified as the modernizing essence of science—whether it’s experimentalism, mathematical methodology, or a mechanical conception of nature—was in fact contested by sixteenth- and seventeenth-century practitioners with equal claims to modernity. Shapin argues that this contested legacy is nevertheless rightly understood as the origin of modern science, its problems as well as its acknowledged achievements. This updated edition includes a new bibliographic essay featuring the latest scholarship. “An excellent book.” —Anthony Gottlieb, New York Times Book Review




A History of Optical Telescopes in Astronomy


Book Description

This book is uniquely about the relationship between the optical telescope and astronomy as they developed together. It covers the time between the telescope's pivotal invention in the 1600's up to the modern era of space-based telescopes. Over the intervening centuries, there were huge improvements in the optical resolution of telescopes, along with changes in their positioning and nature of application that forever altered the course of astronomy. For a long time, the field was an exclusive club for self-motivated stargazers who could afford to build their own telescopes. Many of these leisure-time scholars left their mark by virtue of their meticulous observations and record keeping. Although they would now be considered amateurs, these figures and their contributions were pivotal and are covered in this book alongside professionals, for the first time giving a complete picture of the history of telescopic science.







The Development of Newtonian Calculus in Britain, 1700-1800


Book Description

Guicciardini presents a comprehensive survey of both the research and teaching of Newtonian calculus, the calculus of "fluxions", over the period between 1700 and 1810. Although Newton was one of the inventors of calculus, the developments in Britain remained separate from the rest of Europe for over a century. While it is usually maintained that after Newton there was a period of decline in British mathematics, the author's research demonstrates that the methods used by researchers of the period yielded considerable success in laying the foundations and investigating the applications of the calculus. Even when "decline" set in, in mid century, the foundations of the reform were being laid, which were to change the direction and nature of the mathematics community. The book considers the importance of Isaac Newton, Roger Cotes, Brook Taylor, James Stirling, Abraham de Moivre, Colin Maclaurin, Thomas Bayes, John Landen and Edward Waring. This will be a useful book for students and researchers in the history of science, philosophers of science and undergraduates studying the history of mathematics.







Against Method


Book Description

Modern philosophy of science has paid great attention to the understanding of scientific 'practice', in contrast to concentration on scientific 'method'. Paul Feyerabend's acclaimed work, which has contributed greatly to this new emphasis, shows the deficiencies of some widespread ideas about the nature of knowledge. He argues that the only feasible explanations of scientific successes are historical explanations, and that anarchism must now replace rationalism in the theory of knowledge. The third edition of this classic text contains a new preface and additional reflections at various points in which the author takes account both of recent debates on science and on the impact of scientific products and practices on the human community. While disavowing populism or relativism, Feyerabend continues to insist that the voice of the inexpert must be heard. Thus many environmental perils were first identified by non-experts against prevailing assumptions in the scientific community. Feyerabend's challenging reassessment of scientific claims and understandings are as pungent and timely as ever.