A Computational Perspective on Visual Attention


Book Description

The derivation, exposition, and justification of the Selective Tuning model of vision and attention.




Computational Models of Visual Processing


Book Description

The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille




Selective Visual Attention


Book Description

Visual attention is a relatively new area of study combining a number of disciplines: artificial neural networks, artificial intelligence, vision science and psychology. The aim is to build computational models similar to human vision in order to solve tough problems for many potential applications including object recognition, unmanned vehicle navigation, and image and video coding and processing. In this book, the authors provide an up to date and highly applied introduction to the topic of visual attention, aiding researchers in creating powerful computer vision systems. Areas covered include the significance of vision research, psychology and computer vision, existing computational visual attention models, and the authors' contributions on visual attention models, and applications in various image and video processing tasks. This book is geared for graduates students and researchers in neural networks, image processing, machine learning, computer vision, and other areas of biologically inspired model building and applications. The book can also be used by practicing engineers looking for techniques involving the application of image coding, video processing, machine vision and brain-like robots to real-world systems. Other students and researchers with interdisciplinary interests will also find this book appealing. Provides a key knowledge boost to developers of image processing applications Is unique in emphasizing the practical utility of attention mechanisms Includes a number of real-world examples that readers can implement in their own work: robot navigation and object selection image and video quality assessment image and video coding Provides codes for users to apply in practical attentional models and mechanisms




The Cambridge Handbook of Computational Psychology


Book Description

A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.




Biologically Motivated Computer Vision


Book Description

This book constitutes the refereed proceedings of the Second International Workshop on Biologically Motivated Computer Vision, BMCV 2002, held in Tübingen, Germany, in November 2002. The 22 revised full papers and 37 revised short papers presented together with 6 invited papers were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on neurons and features, motion, mid-level vision, recognition - from scenes to neurons, attention, robotics, and cognitive vision.




Intelligent Systems Technologies and Applications


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the third International Symposium on Intelligent Systems Technologies and Applications (ISTA’17), September 13-16, 2017, Manipal, Karnataka, India. All submissions were evaluated on the basis of their significance, novelty, and technical quality. This proceedings contains 34 papers selected for presentation at the Symposium.




The Oxford Handbook of Attention


Book Description

During the last three decades, there have been enormous advances in our understanding of the neural mechanisms of selective attention at the network as well as the cellular level. The Oxford Handbook of Attention brings together the different research areas that constitute contemporary attention research into one comprehensive and authoritative volume. In 40 chapters, it covers the most important aspects of attention research from the areas of cognitive psychology, neuropsychology, human and animal neuroscience, computational modelling, and philosophy. The book is divided into 4 main sections. Following an introduction from Michael Posner, the books starts by looking at theoretical models of attention. The next two sections are dedicated to spatial attention and non-spatial attention respectively. Within section 4, the authors consider the interactions between attention and other psychological domains. The last two sections focus on attention-related disorders, and finally, on computational models of attention. Aimed at both scholars and students, the Oxford Handbook of Attention provides a concise and state-of-the-art review of the current literature in this field.




Computational Models of Brain and Behavior


Book Description

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.




Computational Explorations in Cognitive Neuroscience


Book Description

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.




Visual Selective Attention


Book Description

This special issue of Visual Cognition features empirical and theoretical contributions by leading research scholars in the field. The volume begins with a general introduction and an authoritative review of work on spatial attention in the flankers task. Next, a series of empirical articles reports important new findings on visual selection by spatial location. A second section contrasts by presenting recent empirical findings on visual selection by other criteria. Finally, four articles present major theoretical statements on aspects of visual attention. As a whole, the issue forms a substantial contribution to the literature on visual selective attention.