A Computer-Aided Design and Synthesis Environment for Analog Integrated Circuits


Book Description

This text addresses the design methodologies and CAD tools available for the systematic design and design automation of analogue integrated circuits. Two complementary approaches discussed increase analogue design productivity, demonstrated throughout using design times of the different design experiments undertaken.




Computer-Aided Design of Analog Integrated Circuits and Systems


Book Description

The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.




Computer-Aided Design of Analog Circuits and Systems


Book Description

Computer-Aided Design of Analog Circuits and Systems brings together in one place important contributions and state-of-the-art research results in the rapidly advancing area of computer-aided design of analog circuits and systems. This book serves as an excellent reference, providing insights into some of the most important issues in the field.







Practical Synthesis of High-Performance Analog Circuits


Book Description

Practical Synthesis of High-Performance Analog Circuits presents a technique for automating the design of analog circuits. Market competition and the astounding pace of technological innovation exert tremendous pressure on circuit design engineers to turn ideas into products quickly and get them to market. In digital Application Specific Integrated Circuit (ASIC) design, computer aided design (CAD) tools have substantially eased this pressure by automating many of the laborious steps in the design process, thereby allowing the designer to maximise his design expertise. But the world is not solely digital. Cellular telephones, magnetic disk drives, neural networks and speech recognition systems are a few of the recent technological innovations that rely on a core of analog circuitry and exploit the density and performance of mixed analog/digital ASICs. To maximize profit, these mixed-signal ASICs must also make it to market as quickly as possible. However, although the engineer working on the digital portion of the ASIC can rely on sophisticated CAD tools to automate much of the design process, there is little help for the engineer working on the analog portion of the chip. With the exception of simulators to verify the circuit design when it is complete, there are almost no general purpose CAD tools that an analog design engineer can take advantage of to automate the analog design flow and reduce his time to market. Practical Synthesis of High-Performance Analog Circuits presents a new variation-tolerant analog synthesis strategy that is a significant step towards ending the wait for a practical analog synthesis tool. A new synthesis strategy is presented that can fully automate the path from a circuit topology and performance specifications to a sized variation-tolerant circuit schematic. This strategy relies on asymptotic waveform evaluation to predict circuit performance and simulated annealing to solve a novel non-linear infinite programming optimization formulation of the circuit synthesis problem via a sequence of smaller optimization problems. Practical Synthesis of High-Performance Analog Circuits will be of interest to analog circuit designers, CAD/EDA industry professionals, academics and students.




Analog Circuit Design


Book Description

This volume of Analog Circuit Design concentrates on three topics: Operational Amplifiers. A-to-D converters and Analog CAD. The book comprises six papers on each topic written by internationally recognised experts. These papers have a tutorial nature aimed at improving the design of analog circuits. The book is divided into three parts. Part I, Operational Amplifiers, presents new technologies for the design of Op-Amps in both bipolar and CMOS technologies. Two papers demonstrate techniques for improving frequency and gain behavior at high voltage. Low voltage bipolar Op-Amp design is treated in another paper. The realization high-speed and high gain VLSI building blocks in CMOS is demonstrated in two papers. The final paper shows how to provide output power with CMOS buffer amplifiers. Part II, Analog-to-Digital Conversion, presents papers which address very high conversion speeds and very high resolution implementations using sigma-delta modulation architectures. Analog to Digital converters provide the link between the analog world of transducers and the digital world of signal processing and computing. High-performance bipolar and MOS technologies result in high-resolution or high-speed convertors which can be applied in digital audio or video systems. Furthermore, the advanced high-speed bipolar technologies show an increase in conversion speed into the gigahertz range. Part III, Analog Computer Aided Design, presents the latest research towards providing analog circuit designers with the tools needed to automate much of the design process. The techniques and methodologies described demonstrate the advances being made in developing analog design tools comparable with those already available for digital design. The papers in this volume are based on those presented at the Workshop on Advances in Analog Circuit Design held in Delft, The Netherlands in 1992. The main intention of the workshop was to brainstorm with a group of about 100 analog design experts on the new possibilities and future developments on the above topics. The result of this brainstorming is contained in Analog Circuit Design, which is thus an important reference for researchers and design engineers working in the forefront of analog circuit design and research.




High-Level Modeling and Synthesis of Analog Integrated Systems


Book Description

Various approaches for finding optimal values for the parameters of analog cells have made their entrance in commercial applications. However, a larger impact on the performance is expected if tools are developed which operate on a higher abstraction level and consider multiple architectural choices to realize a particular functionality. This book examines the opportunities, conditions, problems, solutions and systematic methodologies for this new generation of analog CAD tools.







Analog Layout Synthesis


Book Description

Integrated circuits are fundamental electronic components in biomedical, automotive and many other technical systems. A small, yet crucial part of a chip consists of analog circuitry. This part is still in large part designed by hand and therefore represents not only a bottleneck in the design flow, but also a permanent source of design errors responsible for re-designs, costly in terms of wasted test chips and in terms of lost time-to-market. Layout design is the step of the analog design flow with the least support by commercially available, computer-aided design tools. This book provides a survey of promising new approaches to automated, analog layout design, which have been described recently and are rapidly being adopted in industry.




A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits


Book Description

Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.