Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, SIld disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna and broader dissemination. tional publishing house to assure improved service Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 30 (thesis year 1985) a total of 12,400 theses titles from 26 Canadian and 186 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work.




Theory and Computation of Electromagnetic Fields in Layered Media


Book Description

Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.




ELF Code for Horizontally Stratified Media:


Book Description

Computation of extremely low frequency electromagnetic fields in seawater is of prime importance in detection & evaluation of magnetic & electric signals from ships and in underwater communications. The KHERNER3 program computes the electromagnetic field from a horizontal mono-frequency electric dipole located in the upper layer of a two-layer conducting half-space. Applied to the marine environment, this means that a single conducting layer models the bottom of the sea. For sea bottoms with different layers, this is a coarse approximation only. This report describes how the program was modified so that the sea bottom can be modelled by an arbitrary number of N layers, each with different conductivity & thickness, thereby extending the program's capabilities for a more accurate modelling of the marine environment. The new implementation is based on the analytical solution of the electromagnetic field proposed by Weaver (1981) corrected for the additional reflections from a parallel stratified sea bed consisting of N homogeneous slabs.










Publications


Book Description