A Conceptual History of Space and Symmetry


Book Description

This book presents the author’s personal historical perspective and conceptual analysis on symmetry and geometry. The author enlightens with modern views the historical process which led to the contemporary vision of space and symmetry that are used in theoretical physics and in particular in such abstract and advanced descriptions of the physical world as those provided by supergravity. The book is written intertwining storytelling and philosophical argumentation with some essential technical material. The author argues that symmetry and geometry are inextricably entangled and their current meaning is the result of a long process of abstraction which was determined through history and can be understood within the analytic system of thought of western civilization that started with the Ancient Greeks. The evolution of geometry and symmetry theory in the last forty years has been deeply and constructively influenced by supersymmetry/supergravity and the allied constructions of strings and branes. Further advances in theoretical physics cannot be based simply on the Galilean method of interrogating nature and then formulating a testable theory to explain the observed phenomena. One ought to interrogate human thought, meaning frontier-line mathematics concerned with geometry and symmetry in order to find there the threads of so far unobserved correspondences, reinterpretations and renewed conceptions.




Why Beauty Is Truth


Book Description

Physics.




From Summetria to Symmetry: The Making of a Revolutionary Scientific Concept


Book Description

Many literary critics seem to think that an hypothesis about obscure and remote questions of history can be refuted by a simple demand for the production of more evidence than in fact exists. The demand is as easy to make as it is impossible to satisfy. But the true test of an hypothesis, if it cannot be shown to con?ict with known truths, is the number of facts that it correlates and explains. Francis M. Cornford [1914] 1934, 220. It was in the autumn of 1997 that the research project leading to this publication began. One of us [GH], while a visiting fellow at the Center for Philosophy of Science (University of Pittsburgh), gave a talk entitled, “Proportions and Identity: The Aesthetic Aspect of Symmetry”. The presentation focused on a confusion s- rounding the concept of symmetry: it exhibits unity, yet it is often claimed to reveal a form of beauty, namely, harmony, which requires a variety of elements. In the audience was the co-author of this book [BRG] who responded with enthusiasm, seeking to extend the discussion of this issue to historical sources in earlier periods. A preliminary search of the literature persuaded us that the history of symmetry was rich in possibilities for new insights into the making of concepts. John Roche’s brief essay (1987), in which he sketched the broad outlines of the history of this concept, was particularly helpful, and led us to conclude that the subject was worthy of monographic treatment.




Concepts of Space


Book Description

Historical surveys of the concept of space considers Judeo-Christian ideas about space, Newton's concept of absolute space, space from 18th century to the present. Numerous original quotations and bibliographical references. "Admirably compact and swiftly paced style." — Philosophy of Science. Foreword by Albert Einstein.




Symmetry and the Beautiful Universe


Book Description

When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.




Symmetry


Book Description

The first comprehensive book on the topic in half a century explores recent symmetry – and symmetry breaking – related discoveries, and discusses the questions and answers they raise in diverse disciplines: particle and high-energy physics, structural chemistry and the biochemistry of proteins, in genetic code study, in brain research, and also in architectural structures, and business decision making, to mention only a few examples.




Symmetry Discovered


Book Description

Newly enlarged classic covers basic concepts and terminology, lucid discussions of geometric symmetry, other symmetries and approximate symmetry, symmetry in nature, in science, more. Solutions to problems. Expanded bibliography. 1975 edition.




Symmetries and Group Theory in Particle Physics


Book Description

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.




Space and Geometry


Book Description

These three essays by an eminent scientist explore the nature, origin, and development of our concepts of space from the points of view of the senses, history, and physics. They examine the subject from every direction, in a manner suitable for both undergraduates and other readers. 25 figures.1906 edition.




Philosophy of Physics


Book Description

Philosophy of physics is concerned with the deepest theories of modern physics - quantum theory, our theories of space, time and symmetry, and thermal physics - and their strange, even bizarre conceptual implications. This book explores the core topics in philosophy of physics, and discusses their relevance for both scientists and philosophers.