A Concise Introduction to Programming in Python


Book Description

Suitable for newcomers to computer science, A Concise Introduction to Programming in Python provides a succinct, yet complete, first course in computer science using the Python programming language. The book features: Short, modular chapters with brief and precise explanations, intended for one class period Early introduction of basic procedural constructs such as functions, selection, and repetition, allowing them to be used throughout the course Objects are introduced in the middle of the course, and class design comes toward the end Examples, exercises, and projects from a wide range of application domains, including biology, physics, images, sound, mathematics, games, and textual analysis No external libraries are required, simplifying the book’s use in common lab spaces Each chapter introduces a main idea through a concrete example and a series of exercises. Designed to teach programming in a concise, yet comprehensive way, this book provides a timely introduction for students and anyone interested in learning Python.




A Concise Introduction to Programming in Python


Book Description

A Concise Introduction to Programming in Python, Second Edition provides a hands-on and accessible introduction to writing software in Python, with no prior programming experience required. The Second Edition was thoroughly reorganized and rewritten based on classroom experience to incorporate: A spiral approach, starting with turtle graphics, and then revisiting concepts in greater depth using numeric, textual, and image data Clear, concise explanations written for beginning students, emphasizing core principles A variety of accessible examples, focusing on key concepts Diagrams to help visualize new concepts New sections on recursion and exception handling, as well as an earlier introduction of lists, based on instructor feedback The text offers sections designed for approximately one class period each, and proceeds gradually from procedural to object-oriented design. Examples, exercises, and projects are included from diverse application domains, including finance, biology, image processing, and textual analysis. It also includes a brief "How-To" sections that introduce optional topics students may be interested in exploring. The text is written to be read, making it a good fit in flipped classrooms. Designed for either classroom use or self-study, all example programs and solutions to odd-numbered exercises (except for projects) are available at: http://www.central.edu/go/conciseintro/.




Python Programming


Book Description

This book is suitable for use in a university-level first course in computing (CS1), as well as the increasingly popular course known as CS0. It is difficult for many students to master basic concepts in computer science and programming. A large portion of the confusion can be blamed on the complexity of the tools and materials that are traditionally used to teach CS1 and CS2. This textbook was written with a single overarching goal: to present the core concepts of computer science as simply as possible without being simplistic.




The Quick Python Book


Book Description

Introduces the programming language's syntax, control flow, and basic data structures and covers its interaction with applications and mangement of large collections of code.




Introduction to Computation and Programming Using Python, second edition


Book Description

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.




A Concise Introduction to Programming in Python


Book Description

Suitable for newcomers to computer science, A Concise Introduction to Programming in Python provides a succinct, yet complete, first course in computer science using the Python programming language. The book features:Short, modular chapters with brief and precise explanations, intended for one class periodEarly introduction of basic procedural cons




Introduction to Programming Concepts with Case Studies in Python


Book Description

The current text provides a clear introduction to Computer Science concepts in a programming environment. It is designed as suitable use in freshman- or introductory level coursework in CS and provides the fundamental concepts as well as abstract theorems for solving computational problems. The Python language serves as a medium for illustrating and demonstrating the concepts.




Python Crash Course, 2nd Edition


Book Description

The best-selling Python book in the world, with over 1 million copies sold! A fast-paced, no-nonsense, updated guide to programming in Python. If you've been thinking about learning how to code or picking up Python, this internationally bestselling guide to the most popular programming language is your quickest, easiest way to get started and go! Even if you have no experience whatsoever, Python Crash Course, 2nd Edition, will have you writing programs, solving problems, building computer games, and creating data visualizations in no time. You’ll begin with basic concepts like variables, lists, classes, and loops—with the help of fun skill-strengthening exercises for every topic—then move on to making interactive programs and best practices for testing your code. Later chapters put your new knowledge into play with three cool projects: a 2D Space Invaders-style arcade game, a set of responsive data visualizations you’ll build with Python's handy libraries (Pygame, Matplotlib, Plotly, Django), and a customized web app you can deploy online. Why wait any longer? Start your engine and code!




A Primer on Scientific Programming with Python


Book Description

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015




Introduction to Scientific Programming with Python


Book Description

This open access book offers an initial introduction to programming for scientific and computational applications using the Python programming language. The presentation style is compact and example-based, making it suitable for students and researchers with little or no prior experience in programming. The book uses relevant examples from mathematics and the natural sciences to present programming as a practical toolbox that can quickly enable readers to write their own programs for data processing and mathematical modeling. These tools include file reading, plotting, simple text analysis, and using NumPy for numerical computations, which are fundamental building blocks of all programs in data science and computational science. At the same time, readers are introduced to the fundamental concepts of programming, including variables, functions, loops, classes, and object-oriented programming. Accordingly, the book provides a sound basis for further computer science and programming studies.