A Continuous Thermodynamics Model for Multicomponent Droplet Vaporization


Book Description

For mixtures containing many components, as in the case of commercial fuels and polymer solutions for example, it is practically impossible to have a complete listing of all the components. A method known as continuous thermodynamics has recently been developed for use when dealing with such mixtures. Continuous thermodynamics describes the composition of the mixture by a probability density function with respect to one or more variable, such as molecular mass, boiling point or any other physical property. This method is used here to study the vaporization of multicomponent fuel droplets. Liquid droplet vaporization plays an important role in the formation of the fuel/air mixture necessary for combustion, and the fuel composition has an effect on the performance of combustion equipment such as Diesel engines. Transport equations are developed, which describe species diffusion in terms of the parameters of the distribution function. These equations are developed for "fuel" vapour as a whole and for the mean and second moment of the distribution. A continuous thermodynamics form of the energy equation is also developed. These general equations are then applied to the vaporizing droplet problem. A gamma distribution function, with molecular mass as the characterizing variable has been chosen. The transport equations in continuous form have been incorporated into a finite difference model of droplet vaporization. Physical property correlations have also been developed in terms of the characterizing variable chosen and integrated in the model. The numerical solution of these equations and the equations of conservation of mass and species at the droplet surface gives the droplet vaporization rate, the mixture composition field in the vapour phase surrounding the droplet and the change of the liquid composition with time.




Heating and Evaporation of Multi-Component Fuel Droplets


Book Description

This book documents pioneering mathematical models introduced for the simulation of multi-component droplets heating and evaporation processes which are implementable into commercial CFD codes. These models, described as 'multi-dimensional quasi discrete' (MDQD) and 'discrete-component' models, were applied to automotive fuel droplets in experimentally measured internal combustion engine conditions for biodiesel, diesel, and gasoline fuels. For instance, it is shown that the suggested models lead to accurate predictions of temperatures and evaporation times in typical diesel and gasoline engine conditions. Such models have also reduced CPU time about 85% compared with cases when classical approaches are used.










Droplets and Sprays


Book Description

This book focuses on droplets and sprays relevant to combustion and propulsion applications. The book includes fundamental studies on the heating, evaporation and combustion of individual droplets and basic mechanisms of spray formation. The contents also extend to the latest analytical, numerical and experimental techniques for investigating the behavior of sprays in devices like combustion engines and gas turbines. In addition, the book explores several emerging areas like interactions between sprays and flames and the dynamic characteristics of spray combustion systems on the fundamental side, as well as the development of novel fuel injectors for specific devices on the application side. Given its breadth of coverage, the book will benefit researchers and professionals alike.




Droplets and Sprays: Simple Models of Complex Processes


Book Description

This book acts as a guide to simple models that describe some of the complex fluid dynamics, heat/mass transfer and combustion processes in droplets and sprays. Attention is focused mainly on the use of classical hydrodynamics, and a combination of kinetic and hydrodynamic models, to analyse the heating and evaporation of mono- and multi-component droplets. The models were developed for cases when small and large numbers of components are present in droplets. Some of these models are used for the prediction of time to puffing/micro-explosion of composite water/fuel droplets — processes that are widely used in combustion devices to stimulate disintegration of relatively large droplets into smaller ones. The predictions of numerical codes based on these models are validated against experimental results where possible. In most of the models, droplets are assumed to be spherical; some preliminary results of the generalisation of these models to the case of non-spherical droplets, approximating them as spheroids, are presented.




AIAA Journal


Book Description




Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate Systems


Book Description

This book describes analytical methods for modelling drop evaporation, providing the mathematical tools needed in order to generalise transport and constitutive equations and to find analytical solutions in curvilinear coordinate systems. Transport phenomena in gas mixtures are treated in considerable detail, and the basics of differential geometry are introduced in order to describe interface-related transport phenomena. One chapter is solely devoted to the description of sixteen different orthogonal curvilinear coordinate systems, reporting explicitly on the forms of their differential operators (gradient, divergent, curl, Laplacian) and transformation matrices. The book is intended to guide the reader from mathematics, to physical descriptions, and ultimately to engineering applications, in order to demonstrate the effectiveness of applied mathematics when properly adapted to the real world. Though the book primarily addresses the needs of engineering researchers, it will also benefit graduate students.




Biomass to Biofuels


Book Description

Focusing on the key challenges that still impede the realization of the billion-ton renewable fuels vision, this book integrates technological development and business development rationales to highlight the key technological.developments that are necessary to industrialize biofuels on a global scale. Technological issues addressed in this work include fermentation and downstream processing technologies, as compared to current industrial practice and process economics. Business issues that provide the lens through which the technological review is performed span the entire biofuel value chain, from financial mechanisms to fund biotechnology start-ups in the biofuel arena up to large green field manufacturing projects, to raw material farming, collection and transport to the bioconversion plant, manufacturing, product recovery, storage, and transport to the point of sale. Emphasis has been placed throughout the book on providing a global view that takes into account the intrinsic characteristics of various biofuels markets from Brazil, the EU, the US, or Japan, to emerging economies as agricultural development and biofuel development appear undissociably linked.