A.D. Alexandrov


Book Description

A.D. Alexandrov is considered by many to be the father of intrinsic geometry, second only to Gauss in surface theory. That appraisal stems primarily from this masterpiece--now available in its entirely for the first time since its 1948 publication in Russian. Alexandrov's treatise begins with an outline of the basic concepts, definitions, and r




A. D. Alexandrov Selected Works


Book Description

Alexandr Danilovich Alexandrov has been called a giant of 20th-century mathematics. This volume contains some of the most important papers by this renowned geometer and hence, some of his most influential ideas. Alexandrov addressed a wide range of modern mathematical problems, and he did so with intelligence and elegance, solving some of the discipline's most difficult and enduring challenges. He was the first to apply many of the tools and methods of the theory of real functions and functional analysis that are now current in geometry. The topics here include convex polyhedrons and closed surfaces, an elementary proof and extension of Minkowski's theorem, Riemannian geometry and a method for Dirichlet problems. This monograph, published in English for the first time, gives unparalleled access to a brilliant mind, and advanced students and researchers in applied mathematics and geometry will find it indispensable.




Convex Polyhedra


Book Description

This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.




A. D. Alexandrov Selected Works Part I


Book Description

Alexandr Danilovich Alexandrov has been called a giant of 20th-century mathematics. This volume contains some of the most important papers by this renowned geometer and hence, some of his most influential ideas. Alexandrov addressed a wide range of modern mathematical problems, and he did so with intelligence and elegance, solving some of the disci




Alexandrov Geometry


Book Description

Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.




A D Alexandrov


Book Description




An Invitation to Alexandrov Geometry


Book Description

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.




A. D. Alexandrov Selected Works


Book Description

Alexandr Danilovich Alexandrov has been called a giant of 20th-century mathematics. This volume contains some of the most important papers by this renowned geometer and hence, some of his most influential ideas. Alexandrov addressed a wide range of modern mathematical problems, and he did so with intelligence and elegance, solving some of the discipline's most difficult and enduring challenges. He was the first to apply many of the tools and methods of the theory of real functions and functional analysis that are now current in geometry. The topics here include convex polyhedrons and closed surfaces, an elementary proof and extension of Minkowski's theorem, Riemannian geometry and a method for Dirichlet problems. This monograph, published in English for the first time, gives unparalleled access to a brilliant mind, and advanced students and researchers in applied mathematics and geometry will find it indispensable.




Lectures on Spaces of Nonpositive Curvature


Book Description

Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.