A Digital Signal Processor for Particle Detectors


Book Description

To cope with the new running conditions in the ALICE experiment at the Large Hadron Collider at CERN, a new integrated circuit named SAMPA has been created that can process 32 analogue channels, convert them to digital, perform filtering and compression, and transmit the data on high speed links to the data acquisition system. The main purpose of this work is to specify, design, test and verify the digital signal processing part of the SAMPA device to accommodate the requirements of the detectors involved. Innovative solutions have been employed to reduce the bandwidth required by the detectors, as well as adaptations to ease data handling later in the processing chain. The new SAMPA device was built to replace two existing circuits, in addition to reducing the current consumption, and doubling the amount of processing channels. About 50000 of the devices will be installed in the Time Projection Chamber and Muon Chamber detectors in the ALICE experiment.




Particle Physics Reference Library


Book Description

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Handbook of Particle Detection and Imaging


Book Description

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.




Particle Detectors


Book Description

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.




X-ray Detection By Superconducting Tunnel Junctions - Proceedings Of The International Workshop


Book Description

This volume gives the state-of-the-art on superconducting tunnel junctions as X-ray detectors for low energy radioastronomy. Contributions from major experts of the main laboratories in the world are included. They cover many aspects of the subject, from nonequilibrium phenomena in STJ to the detector design optimization, and report the most recent experimental results in the field.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Prevention, Detection and Response to Nuclear and Radiological Threats


Book Description

Stemming from the NATO Advanced Research Workshop, this book asserts that no single institution or country possesses all the resources to effectively address radiological and nuclear threats. Moreover, the book asserts that fundamental scientific challenges must be overcome to achieve new and improved technologies. In response, the book sets forth research strategies that advance the ability to counter nuclear and radiological threats.




The FAST Mission


Book Description

1.1. MISSION BACKGROUND The scientific objective of this magnetospheric physics mission was a detailed in vestigation of the Aurora Borealis, or 'Northern Lights'. The fields experiments (electric and magnetic) were constructed by the University of California at Berke ley (UCB), and Los Angeles (UCLA) respectively. The particles instruments were constructed by UCB and the University of New Hampshire in collaboration with Lockheed Palo Alto Research Laboratory. The instrument data processing unit was provided by UCB. The spacecraft bus, telemetry, and launch services were provided by the NASA Goddard Space Flight Center SMEX office. The science principal investigator is Dr C. W. Carlson of UCB, and the program is managed by the SMEX office. The UCB design philosophy emphasizes the demonstration of design margins set by peer review. As a result, each boom system was extensively tested at a prototype level before the flight units were manufactured. Additionally, the design, assembly and testing of each boom mechanism was conducted by a single engineer solely responsible for its success.




Analog Electronics for Radiation Detection


Book Description

Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal–oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma–delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors with per-pixel TDCs, channel density challenges, and emerging 3D technologies interconnecting detectors and electronics Thus, Analog Electronics for Radiation Detection provides a single source for state-of-the-art information on analog electronics for the readout of radiation detectors.