High Efficiency Video Coding (HEVC)


Book Description

This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.




High Efficiency Video Coding and Other Emerging Standards


Book Description

High Efficiency Video Coding and Other Emerging Standards provides an overview of high efficiency video coding (HEVC) and all its extensions and profiles. There are nearly 300 projects and problems included, and about 400 references related to HEVC alone. Next generation video coding (NGVC) beyond HEVC is also described. Other video coding standards such as AVS2, DAALA, THOR, VP9 (Google), DIRAC, VC1, and AV1 are addressed, and image coding standards such as JPEG, JPEG-LS, JPEG2000, JPEG XR, JPEG XS, JPEG XT and JPEG-Pleno are also listed.Understanding of these standards and their implementation is facilitated by overview papers, standards documents, reference software, software manuals, test sequences, source codes, tutorials, keynote speakers, panel discussions, reflector and ftp/web sites – all in the public domain. Access to these categories is also provided.




Complexity-Aware High Efficiency Video Coding


Book Description

This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity. Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard. The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that employs the best complexity reduction and scaling methods presented throughout the book. The methods presented in this book are especially useful in power-constrained, portable multimedia devices to reduce energy consumption and to extend battery life. They can also be applied to portable and non-portable multimedia devices operating in real time with limited computational resources.




MultiMedia Modeling


Book Description

The two-volume set LNCS 11961 and 11962 constitutes the thoroughly refereed proceedings of the 25th International Conference on MultiMedia Modeling, MMM 2020, held in Daejeon, South Korea, in January 2020. Of the 171 submitted full research papers, 40 papers were selected for oral presentation and 46 for poster presentation; 28 special session papers were selected for oral presentation and 8 for poster presentation; in addition, 9 demonstration papers and 6 papers for the Video Browser Showdown 2020 were accepted. The papers of LNCS 11961 are organized in the following topical sections: audio and signal processing; coding and HVS; color processing and art; detection and classification; face; image processing; learning and knowledge representation; video processing; poster papers; the papers of LNCS 11962 are organized in the following topical sections: poster papers; AI-powered 3D vision; multimedia analytics: perspectives, tools and applications; multimedia datasets for repeatable experimentation; multi-modal affective computing of large-scale multimedia data; multimedia and multimodal analytics in the medical domain and pervasive environments; intelligent multimedia security; demo papers; and VBS papers.




Versatile Video Coding


Book Description

Video is the main driver of bandwidth use, accounting for over 80 per cent of consumer Internet traffic. Video compression is a critical component of many of the available multimedia applications, it is necessary for storage or transmission of digital video over today's band-limited networks. The majority of this video is coded using international standards developed in collaboration with ITU-T Study Group and MPEG. The MPEG family of video coding standards begun on the early 1990s with MPEG-1, developed for video and audio storage on CD-ROMs, with support for progressive video. MPEG-2 was standardized in 1995 for applications of video on DVD, standard and high definition television, with support for interlaced and progressive video. MPEG-4 part 2, also known as MPEG-2 video, was standardized in 1999 for applications of low- bit rate multimedia on mobile platforms and the Internet, with the support of object-based or content based coding by modeling the scene as background and foreground. Since MPEG-1, the main video coding standards were based on the so-called macroblocks. However, research groups continued the work beyond the traditional video coding architectures and found that macroblocks could limit the performance of the compression when using high-resolution video. Therefore, in 2013 the high efficiency video coding (HEVC) also known and H.265, was released, with a structure similar to H.264/AVC but using coding units with more flexible partitions than the traditional macroblocks. HEVC has greater flexibility in prediction modes and transform block sizes, also it has a more sophisticated interpolation and de blocking filters. In 2006 the VC-1 was released. VC-1 is a video codec implemented by Microsoft and the Microsoft Windows Media Video (VMW) 9 and standardized by the Society of Motion Picture and Television Engineers (SMPTE). In 2017 the Joint Video Experts Team (JVET) released a call for proposals for a new video coding standard initially called Beyond the HEVC, Future Video Coding (FVC) or known as Versatile Video Coding (VVC). VVC is being built on top of HEVC for application on Standard Dynamic Range (SDR), High Dynamic Range (HDR) and 360° Video. The VVC is planned to be finalized by 2020. This book presents the new VVC, and updates on the HEVC. The book discusses the advances in lossless coding and covers the topic of screen content coding. Technical topics discussed include: Beyond the High Efficiency Video CodingHigh Efficiency Video Coding encoderScreen contentLossless and visually lossless coding algorithmsFast coding algorithmsVisual quality assessmentOther screen content coding algorithmsOverview of JPEG Series




Soft Computing and Signal Processing


Book Description

This book presents selected research papers on current developments in the fields of soft computing and signal processing from the Third International Conference on Soft Computing and Signal Processing (ICSCSP 2020). The book covers topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning and discusses various aspects of these topics, e.g., technological considerations, product implementation and application issues.




Image and Graphics


Book Description

This three-volume set LNCS 10666, 10667, and 10668 constitutes the refereed conference proceedings of the 9thInternational Conference on Image and Graphics, ICIG 2017, held in Shanghai, China, in September 2017. The 172 full papers were selected from 370 submissions and focus on advances of theory, techniques and algorithms as well as innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking.




Advances in Computer Communication and Computational Sciences


Book Description

This book includes key insights that reflect ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academics around the globe. It gathers high-quality, peer-reviewed papers presented at the International Conference on Computer, Communication and Computational Sciences (IC4S 2018), which was held on 20-21 October, 2018 in Bangkok. The book covers a broad range of topics, including intelligent hardware and software design, advanced communications, intelligent computing techniques, intelligent image processing, and web and informatics. Its goal is to familiarize readers from the computer industry and academia with the latest advances in next-generation computer and communication technology, which they can subsequently integrate into real-world applications.




2013 International Conference on Computer Science and Artificial Intelligence


Book Description

The main objective of ICCSAI2013 is to provide a platform for the presentation of top and latest research results in global scientific areas. The conference aims to provide a high level international forum for researcher, engineers and practitioners to present and discuss recent advances and new techniques in computer science and artificial intelligence. It also serves to foster communications among researcher, engineers and practitioners working in a common interest in improving computer science, artificial intelligence and the related fields. We have received 325 numbers of papers through "Call for Paper", out of which 94 numbers of papers were accepted for publication in the conference proceedings through double blind review process. The conference is designed to stimulate the young minds including Research Scholars, Academicians, and Practitioners to contribute their ideas, thoughts and nobility in these two disciplines.




Fuzzy Systems and Data Mining V


Book Description

The Fuzzy Systems and Data Mining (FSDM) conference is an annual event encompassing four main themes: fuzzy theory, algorithms and systems, which includes topics like stability, foundations and control; fuzzy application, which covers different kinds of processing as well as hardware and architectures for big data and time series and has wide applicability; the interdisciplinary field of fuzzy logic and data mining, encompassing applications in electrical, industrial, chemical and engineering fields as well as management and environmental issues; and data mining, outlining new approaches to big data, massive data, scalable, parallel and distributed algorithms. The annual conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This book includes the papers accepted and presented at the 5th International Conference on Fuzzy Systems and Data Mining (FSDM 2019), held in Kitakyushu, Japan on 18-21 October 2019. This year, FSDM received 442 submissions. All papers were carefully reviewed by program committee members, taking account of the quality, novelty, soundness, breadth and depth of the research topics falling within the scope of FSDM. The committee finally decided to accept 137 papers, which represents an acceptance rate of about 30%. The papers presented here are arranged in two sections: Fuzzy Sets and Data Mining, and Communications and Networks. Providing an overview of the most recent scientific and technological advances in the fields of fuzzy systems and data mining, the book will be of interest to all those working in these fields.