Set Theory, Logic and Their Limitations


Book Description

This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations. A rigorous axiomatic presentation of Zermelo-Fraenkel set theory is given, demonstrating how the basic concepts of mathematics have apparently been reduced to set theory. This is followed by a presentation of propositional and first-order logic. Concepts and results of recursion theory are explained in intuitive terms, and the author proves and explains the limitative results of Skolem, Tarski, Church and Gödel (the celebrated incompleteness theorems). For students of mathematics or philosophy this book provides an excellent introduction to logic and set theory.




Logic for Computer Scientists


Book Description

This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.




Proofs and Refutations


Book Description

Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.




An Introduction to Mathematical Logic


Book Description

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.







First-Order Logic


Book Description

Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).







Classical Logic and Its Rabbit-Holes


Book Description

Many students ask, 'What is the point of learning formal logic?' This book gives them the answer. Using the methods of deductive logic, Nelson Lande introduces each new element in exquisite detail, as he takes students through example after example, proof after proof, explaining the thinking behind each concept. Shaded areas and appendices throughout the book provide explanations and justifications that go beyond the main text, challenging those students who wish to delve deeper, and giving instructors the option of confining their course to the basics, or expanding it, when they wish, to more rigorous levels. Lande encourages students to think for themselves, while at the same time providing them with the level of explanation they need to succeed. It is a rigorous approach presented in a style that is informal, engaging, and accessible. Students will come away with a solid understanding of formal logic and why it is not only important, but also interesting and sometimes even fun. It is a text that brings the human element back into the teaching of logic. --Hans Halvorson, Princeton University




Introduction to Logic


Book Description

This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.




The Science of Logic


Book Description