A First Course in Vibrations and Waves


Book Description

The study of vibrations and waves is central to physics and engineering disciplines.This text contains a detailed treatment of vibrations and waves at an introductory level suitable for second and third year students. It builds on first year physics and emphasizes understanding of vibratory motion and waves based on first principles. Since waves appear in almost all branches of physics and engineering, readers will be exposed to many different types of waves; this study aims to draw together their similarities, by examining them in a common language. The book is divided into three parts: Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, and Fourier series. It concludes with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves, focusing on the discussion of common aspects of all types of waves, and the applications to sound, electromagnetic, and matter waves are illustrated. Finally, relevant examples are provided at the end of the chapters to illustrate the main ideas, and better the reader's understanding.




A First Course in Vibrations and Waves


Book Description

The book contains a detailed treatment of vibrations and waves at an introductory level. Since waves appear in almost all branches of physics and engineering, readers will be exposed to different types of waves in this book with a common language.




Vibrations and Waves


Book Description

The M.I.T. Introductory Physics Series is the result of a program of careful study, planning, and development that began in 1960. The Education Research Center at the Massachusetts Institute of Technology (formerly the Science Teaching Center) was established to study the process of instruction, aids thereto, and the learning process itself, with special reference to science teaching at the university level. Generous support from a number of foundations provided the means for assembling and maintaining an experienced staff to co-operate with members of the Institute's Physics Department in the examination, improvement, and development of physics curriculum materials for students planning careers in the sciences. After careful analysis of objectives and the problems involved, preliminary versions of textbooks were prepared, tested through classroom use at M.I.T. and other institutions, re-evaluated, rewritten, and tried again. Only then were the final manuscripts undertaken.




Vibrations and Waves


Book Description

This introductory text emphasises physical principles, rather than the mathematics. Each topic begins with a discussion of the physical characteristics of the motion or system. The mathematics is kept as clear as possible, and includes elegant mathematical descriptions where possible. Designed to provide a logical development of the subject, the book is divided into two sections, vibrations followed by waves. A particular feature is the inclusion of many examples, frequently drawn from everyday life, along with more cutting-edge ones. Each chapter includes problems ranging in difficulty from simple to challenging and includes hints for solving problems. Numerous worked examples included throughout the book.




Vibrations and Waves in Continuous Mechanical Systems


Book Description

The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.




The Physics of Waves


Book Description

The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.




Waves and Oscillations


Book Description

This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.




Vibrations and Waves in Physics


Book Description

For the third edition of this successful undergraduate text, the author has made a number of changes to improve the presentation and clarify some of the arguments, and has also brought several of the applications up to date. The new material includes an elementary, descriptive introduction to the ideas behind the new science of chaos. The overall objectives of the book are unchanged: to lead the student to a thorough understanding of the basic concepts of vibrations and waves, to show how these concepts unify a wide variety of familiar physics, and to open doors to advanced topics which they illuminate. Each section of the book contains a brief summary of its salient contents. There are approximately 180 problems to which all numerical answers are provided, together with hints for their solution. This book is designed both for use as a text for an initial undergraduate course on vibrations and waves, and for a reference at later stages when more advanced topics or applications are met.




Principles of Vibration and Sound


Book Description

An ideal text for advanced undergraduates, the book provides the foundations needed to understand the acoustics of rooms and musical instruments as well as the basics for scientists and engineers interested in noise and vibration. The new edition contains four new chapters devoted primarily to applications of acoustical principles in everyday life: Microphones and Other Transducers, Sound in Concert Halls and Studios, Sound and Noise Outdoors; and Underwater Sound.




Introduction to Vibrations and Waves


Book Description

Based on the successful multi-edition book “The Physics of Vibrations and Waves” by John Pain, the authors carry over the simplicity and logic of the approach taken in the original first edition with its focus on the patterns underlying and connecting so many aspects of physical behavior, whilst bringing the subject up-to-date so it is relevant to teaching in the 21st century. The transmission of energy by wave propagation is a key concept that has applications in almost every branch of physics with transmitting mediums essentially acting as a continuum of coupled oscillators. The characterization of these simple oscillators in terms of three parameters related to the storage, exchange, and dissipation of energy forms the basis of this book. The text moves naturally on from a discussion of basic concepts such as damped oscillations, diffraction and interference to more advanced topics such as transmission lines and attenuation, wave guides, diffusion, Fourier series, and electromagnetic waves in dielectrics and conductors. Throughout the text the emphasis on the underlying principles helps readers to develop their physics insight as an aid to problem solving. This book provides undergraduate students of physics and engineering with the mathematical tools required for full mastery of the concepts. With worked examples presented throughout the text, as well as the Problem sets concluding each chapter, this textbook will enable students to develop their skills and measure their understanding of each topic step-by-step. A companion website is also available, which includes solutions to chapter problems and PowerPoint slides. Review of “The Physics of Vibrations and Waves 6e“ This is an excellent textbook, full of interesting material clearly explained and fully worthy of being studied by future contributors ..." Journal of Sound and Vibration