A First Principles Based Methodology for Design of Axial Compressor Configurations


Book Description

Axial compressors are widely used in many aerodynamic applications. The design of an axial compressor configuration presents many challenges. Until recently, compressor design was done using 2-D viscous flow analyses that solve the flow field around cascades or in meridional planes or 3-D inviscid analyses. With the advent of modern computational methods it is now possible to analyze the 3-D viscous flow and accurately predict the performance of 3-D multistage compressors. It is necessary to retool the design methodologies to take advantage of the improved accuracy and physical fidelity of these advanced methods. In this is study, a first-principles based multi-objective technique for designing single stage compressors is described. The study accounts for stage aerodynamic characteristics, rotor-stator interactions and blade elastic deformations. A parametric representation of compressor blades that include leading and trailing edge camber line angles, thickness and camber distributions was used in this study A design of experiment approach is used to reduce the large combinations of design variables into a smaller subset. A response surface method is used to approximately map the output variables as a function of design variables. An optimized configuration is determined as the extremum of all extrema. This method has been applied to a rotor-stator stage similar to NASA Stage 35. The study has two parts: a preliminary study where a limited number of design variables were used to give an understanding of the important design variables for subsequent use, and a comprehensive application of the methodology where a larger, more complete set of design variables are used. The extended methodology also attempts to minimize the acoustic fluctuations at the rotor-stator interface by considering a rotor-wake influence coefficient (RWIC). Results presented include performance map calculations at design and off-design speed along with a detailed visualization of the flow field at design and off-design conditions. The present methodology provides a way to systematically screening through the plethora of design variables. By selecting the most influential design parameters and by optimizing the blade leading edge and trailing edge mean camber line angles, phenomenon's such as tip blockages, blade-to-blade shock structures and other loss mechanisms can be weakened or alleviated. It is found that these changes to the configuration can have a beneficial effect on total pressure ratio and stage adiabatic efficiency, thereby improving the performance of the axial compression system. Aeroacoustic benefits were found by minimizing the noise generating mechanisms associated with rotor wake-stator interactions. The new method presented is reliable, low time cost, and easily applicable to industry daily design optimization of turbomachinery blades.







Axial-flow Compressors


Book Description

This book provides a thorough description of an aerodynamic design and analysis systems for Axial-Flow Compressors. It describes the basic fluid dynamic and thermodynamic principles, empirical models and numerical methods used for the full range of procedures and analytical tools that an engineer needs for virtually any tupe of Axial-Flow Compressor, aerodynamic design or analysis activity. It reviews and evaluates several design strategies that have been recommended in the literature or which have been found to be effective. It gives a complete description of an actual working system, such that readers can implement all or part of the system. Engineers responsible for developing, maintaining of improving design and analysis systems can benefit greatly from this type of reference. The technology has become so complex and the role of computers so pervasive that about the only way this can be done today is to concentrate on a specific design and analysis system. The author provides practical methodology as well as the details needed to implement the suggested procedures.










Design and Tests of a Six-stage Axial-flow Compressor Having a Tip Speed of 550 Feet Per Second and a Flat Operating Characteristic at Constant Speed


Book Description

A six-stage axial-flow compressor with a tip speed of 550 feet per second and a flat operating characteristics at constant speed has been designed and tested. It was designed for a constant power input per pound of flow in expectation that this would result in a wider mass-flow operating range at a given stagnation-presssure ratio. The design specific weight flow was 21.3 pounds per second per square foot of frontal area at atmospheric discharge with a stagnation-pressure ratio of 3.25 and an inlet hub-tip radius ratio of 0.7. Several configurations consisting of various blade setting angles and solidities were tested. Tests showed that the design flow, pressure ratio, and flat operating characteristic were obtained over a range of 10 percent of design flow at a peak efficiency of 82 percent for design conditions. The compressor had a possible immediate application for air removal from a large slotted-throat transonic wind tunnel, but the design theory could apply to any low-speed industrial compressor or second spool of a turbojet engine.




An Improved Blade Passage Model for Estimating Off-design Axial Compressor Performance


Book Description

Accurate estimates of multistage axial compressor performance at off-design operating conditions are essential to the determination of key performance metrics of aircraft gas turbine engines, such as fuel burn, thrust output, and stable operating range. However, conventional RANS based CFD calculations of multistage axial compressors diverge at off-design operating conditions where large separation occurs and the stages are mismatched. This thesis demonstrates the feasibility of a body force based approach to capturing the three-dimensional flow field through a turbomachinery blade row at off-design conditions. A first principles based blade passage model is introduced which addresses the limitations of previous approaches. The inputs to the improved blade passage model are determined from three-dimensional, steady, single-passage RANS CFD calculations. In a first step towards modeling multistage configurations, the improved blade passage model is validated using a fan rotor test case. At the design operating conditions, the stagnation pressure rise coefficient and the work coefficient are both estimated within 5%, and the adiabatic efficiency is estimated within 1 percentage point over most of the span relative to single-passage RANS CFD simulations. At low mass flow operating conditions, where the single-passage RANS CFD diverges, the blade passage model and related body force representation are capable of computing the three-dimensional throughflow with separation and reversed flow. These results pave the way for future unsteady calculations to assess compressor stability and for multistage compressor simulations at off-design conditions.







Compressor Handbook


Book Description

This book provides a practical introduction to dynamic and positive displacement compressors, including compressor performance, operation, and problem awareness. In reading this book readers will learn what is needed to select, operate, and troubleshoot compressors. Complete with real-life case histories, the book demonstrates investigative techniques for identifying and isolating various contributing causes, including design deficiencies, manufacturing defects, adverse environmental conditions, operating errors, and intentional or unintentional changes of the machinery process that usually precede failure.