A Framework for Realtime 3-D Reconstruction by Space Carving Using Graphics Hardware


Book Description

Inhaltsangabe:Introduction: Reconstruction of real-world scenes from a set of multiple images is a topic in Computer Vision and 3D Computer Graphics with many interesting applications. There is a relation to Augmented and Mixed Reality (AR/MR), Computer-Supported Collaborative Work (CSCW), Computer-Aided industrial/architectural Design (CAD), modeling of the real-world (e.g. computer games, scenes/effects in movies), entertainment (e.g. 3D TV/Video) and recognition/analyzing of real-world characteristics by computer systems and robots. There exists a powerful algorithm theory for shape reconstruction from arbitrary viewpoints, called shape from photo-consistency. However, it is computationally expensive and hence can not be used with applications in the field of 3D video or CSCW as well as interactive 3D model creation. Attempts have been made to achieve real-time framerates using PC cluster systems. While these provide enough performance they are also expensive and less flexible. Approaches that use GPU hardware-acceleration on single workstations achieve interactive framerates for novel-view synthesis, but do not provide an explicit volumetric representation of the whole scene. The proposed approach shows the efforts in developing a GPU hardware-accelerated framework for obtaining the volumetric photo hull of a dynamic 3D scene as seen from multiple calibrated cameras. High performance is achieved by employing a shape from silhouette technique in advance to obtain a tight initial volume for shape from photo-consistency. Also several speed-up techniques are presented to increase efficiency. Since the entire processing is done on a single PC, the framework can be applied to mobile setups, enabling a wide range of further applications. The approach is explained using programmable vertex and fragment processors and compared to highly optimized CPU implementations. It is shown that the new approach can outperform the latter by more than one magnitude. The thesis is organized as follows: Chapter 1 contains an introduction, giving an overview with classification of related techniques, statement of the main problem, novelty of the proposed approach and its fields of application. Chapter 2 surveys related work in the area of dynamic scene reconstruction by shape from silhouette and shape from photo-consistency. The focus lies on high performance reconstruction and hardware-acceleration. Chapter 3 introduces the theoretical basis for the proposed [...]




Computer Vision Systems


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Computer Vision Systems, ICVS 2017, held in Shenzhen, China, in July 2017. The 61 papers presented were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on visual control, visual navigation, visual inspection, image processing, human robot interaction, stereo system, image retrieval, visual detection, visual recognition, system design, and 3D vision / fusion.




Multi-View Stereo


Book Description

Presents a hands-on view of the field of multi-view stereo with a focus on practical algorithms. It frames the multiview stereo problem as an image/geometry consistency optimization problem and describesits main two ingredients: robust implementations of photometric consistency measures and efficient optimization algorithms.




Augmented Reality


Book Description

Today’s Comprehensive and Authoritative Guide to Augmented Reality By overlaying computer-generated information on the real world, augmented reality (AR) amplifies human perception and cognition in remarkable ways. Working in this fast-growing field requires knowledge of multiple disciplines, including computer vision, computer graphics, and human-computer interaction. Augmented Reality: Principles and Practice integrates all this knowledge into a single-source reference, presenting today’s most significant work with scrupulous accuracy. Pioneering researchers Dieter Schmalstieg and Tobias Höllerer carefully balance principles and practice, illuminating AR from technical, methodological, and user perspectives. Coverage includes Displays: head-mounted, handheld, projective, auditory, and haptic Tracking/sensing, including physical principles, sensor fusion, and real-time computer vision Calibration/registration, ensuring repeatable, accurate, coherent behavior Seamless blending of real and virtual objects Visualization to enhance intuitive understanding Interaction–from situated browsing to full 3D interaction Modeling new geometric content Authoring AR presentations and databases Architecting AR systems with real-time, multimedia, and distributed elements This guide is indispensable for anyone interested in AR, including developers, engineers, students, instructors, researchers, and serious hobbyists.




Programming Massively Parallel Processors


Book Description

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing




Real-Time Rendering


Book Description

Thoroughly revised, this third edition focuses on modern techniques used to generate synthetic three-dimensional images in a fraction of a second. With the advent of programmable shaders, a wide variety of new algorithms have arisen and evolved over the past few years. This edition discusses current, practical rendering methods used in games and other applications. It also presents a solid theoretical framework and relevant mathematics for the field of interactive computer graphics, all in an approachable style. The authors have made the figures used in the book available for download for fair use.:Download Figures. Reviews Rendering has been a required reference for professional graphics practitioners for nearly a decade. This latest edition is as relevant as ever, covering topics from essential mathematical foundations to advanced techniques used by today’s cutting edge games. -- Gabe Newell, President, Valve, May 2008 Rendering ... has been completely revised and revamped for its updated third edition, which focuses on modern techniques used to generate three-dimensional images in a fraction of the time old processes took. From practical rendering for games to math and details for better interactive applications, it's not to be missed. -- The Bookwatch, November 2008 You'll get brilliantly lucid explanations of concepts like vertex morphing and variance shadow mapping—as well as a new respect for the incredible craftsmanship that goes into today's PC games. -- Logan Decker, PC Gamer Magazine , February 2009




Virtual Heritage


Book Description

Virtual heritage has been explained as virtual reality applied to cultural heritage, but this definition only scratches the surface of the fascinating applications, tools and challenges of this fast-changing interdisciplinary field. This book provides an accessible but concise edited coverage of the main topics, tools and issues in virtual heritage. Leading international scholars have provided chapters to explain current issues in accuracy and precision; challenges in adopting advanced animation techniques; shows how archaeological learning can be developed in Minecraft; they propose mixed reality is conceptual rather than just technical; they explore how useful Linked Open Data can be for art history; explain how accessible photogrammetry can be but also ethical and practical issues for applying at scale; provide insight into how to provide interaction in museums involving the wider public; and describe issues in evaluating virtual heritage projects not often addressed even in scholarly papers. The book will be of particular interest to students and scholars in museum studies, digital archaeology, heritage studies, architectural history and modelling, virtual environments.




Vision Algorithms: Theory and Practice


Book Description

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Vision Algorithms held in Corfu, Greece in September 1999 in conjunction with ICCV'99. The 15 revised full papers presented were carefully reviewed and selected from 65 submissions; each paper is complemented by a brief transcription of the discussion that followed its presentation. Also included are two invited contributions and two expert reviews as well as a panel discussion. The volume spans the whole range of algorithms for geometric vision. The authors and volume editors succeeded in providing added value beyond a mere collection of papers and made the volume a state-of-the-art survey of their field.




3D Structure from Images - SMILE 2000


Book Description

This volume contains the ?nal version of the papers originally presented at the second SMILE workshop 3D Structure from Multiple Images of Large-scale Environments, which was held on 1-2 July 2000 in conjunction with the Sixth European Conference in Computer Vision at Trinity College Dublin. The subject of the workshop was the visual acquisition of models of the 3D world from images and their application to virtual and augmented reality. Over the last few years tremendous progress has been made in this area. On the one hand important new insightshavebeenobtainedresultinginmore exibilityandnewrepresentations.Onthe other hand a number of techniques have come to maturity, yielding robust algorithms delivering good results on real image data. Moreover supporting technologies – such as digital cameras, computers, disk storage, and visualization devices – have made things possible that were infeasible just a few years ago. Opening the workshop was Paul Debevec s invited presentation on image-based modeling,rendering,andlighting.Hepresentedanumberoftechniquesforusingdigital images of real scenes to create 3D models, virtual camera moves, and realistic computer animations.Theremainderoftheworkshopwasdividedintothreesessions:Computation and Algorithms, Visual Scene Representations, and Extended Environments. After each session there was a panel discussion that included all speakers. These panel discussions were organized by Bill Triggs, Marc Pollefeys, and Tomas Pajdla respectively, who introduced the topics and moderated the discussion. Asubstantialpartoftheseproceedingsarethetranscriptsofthediscussionsfollowing each paper and the full panel sessions. These discussions were of very high quality and were an integral part of the workshop.




Oriented Projective Geometry


Book Description

Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.