Advances in Visual Perception Research


Book Description

This book provides a state-of-the-art discussion forum for topics that are of high interest in the field of visual perception research. Experts from different countries and different scientific disciplines, such as medicine, psychology, neuroscience, sport and movement science, provide a number of significant contributions, covering recent theoretical developments, innovative methodical developments, current research evidence, as well as implications for practical applications in the field of visual perception. Topics discussed in the book include the role of importance in visual perception, accuracy and bias in emotion perception, automated vector-based gaze analysis, visual-vestibular interactions when performing complex skills, variability of fixation durations in healthy participants, gaze behaviour in subjects with attention deficit hyperactivity disorder, perception of moving objects in real life, controlling posture in differing perceptual information situations, orientation matching in perceptual space, error correction on the basis of visual information in sports, visual perceptual learning in cytopathology, visuomotor behaviour in virtual reality situations, role of augmented visual feedback in motor learning, informational domains in integrating information from different sensory sources, and the role of visual inputs in sensorimotor integration. Given the wide range of topics and scientific disciplines, this book may be an important source of information for graduate students, researchers and practitioners that study and work in the field of visual perception.




Social Psychology of Visual Perception


Book Description

This volume takes a contemporary and novel look at how people see the world around them. We generally believe we see our surroundings and everything in it with complete accuracy. However, as the contributions to this volume argue, this assumption is wrong: people’s view of their world is cloudy at best. Social Psychology of Visual Perception is a thorough examination of the nature and determinants of visual perception, which integrates work on social psychology and vision. It is the first broad-based volume to integrate specific sub-areas into the study of vision, including goals and wishes, sex and gender, emotions, culture, race, and age. The volume tackles a range of engaging issues, such as what is happening in the brain when people look at attractive faces, or if the way our eyes move around influences how happy we are and could help us reduce stress. It reveals that sexual desire, our own sexual orientation, and our race affect what types of people capture our attention. It explores whether our brains and eyes work differently when we are scared or disgusted, or when we grow up in Asia rather than North America. The multiple perspectives in the book will appeal to researchers and students in range of disciplines, including social psychology, cognition, evolutionary psychology, and neuroscience.




Oxford Handbook of Numerical Cognition


Book Description

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.




Brain and Visual Perception


Book Description

This is the story of a hugely successful and enjoyable 25-year collaboration between two scientists who set out to learn how the brain deals with the signals it receives from the two eyes. Their work opened up a new area of brain research that led to their receiving the Nobel Prize in 1981. The book contains their major papers from 1959 to 1981, each preceded and followed by comments telling how and why the authors went about the study, how the work was received, and what has happened since. It begins with short autobiographies of both men, and describes the state of the field when they started. It is intended not only for neurobiologists, but for anyone interested in how the brain works-biologists, psychologists, philosophers, physicists, historians of science, and students at all levels from high school to graduate level.




Visual Perception


Book Description

Vision is our most dominant sense, from which we derive most of our information about the world. From the light that enters the eye and the processing in the brain that follows we can sense where things are, how they move and what they are. The first edition of Visual Perception took a refreshingly different approach to perception, starting from the function that vision serves for an active observer in a three-dimensional environment. This fully revised and expanded new edition continues this approach in contrast to the traditional textbook treatment of vision as a catalogue of phenomena. Following a general introduction to the main theoretical approaches, the authors discuss the historical basis of our current knowledge. Placing the study of vision in its historical context, they look at how our ideas have been shaped by art, optics, biology and philosophy as well as psychology. Visual optics and the neurophysiology of vision are also described. The core of the book covers the perception of location, motion and object recognition. There is a new chapter on representation and vision, including a section on the perception of computer generated images. This readable, accessible and truly relevant introduction to the world of perception aims to elicit both independent thought and further study. It will be welcomed by students of visual perception and those with a general interest in the mysteries of vision.




Basic Vision


Book Description

If you've ever been tricked by an optical illusion, you'll have some idea about just how clever the relationship between your eyes and your brain is. This book leads one through the intricacies of the subject and demystifying how we see.




Perceptual Learning


Book Description

A comprehensive and integrated introduction to the phenomena and theories of perceptual learning, focusing on the visual domain. Practice or training in perceptual tasks improves the quality of perceptual performance, often by a substantial amount. This improvement is called perceptual learning (in contrast to learning in the cognitive or motor domains), and it has become an active area of research of both theoretical and practical significance. This book offers a comprehensive introduction to the phenomena and theories of perceptual learning, focusing on the visual domain. Perceptual Learning explores the tradeoff between the competing goals of system stability and system adaptability, signal and noise, retuning and reweighting, and top-down versus bottom-down processes. It examines and evaluates existing research and potential future directions, including evidence from behavior, physiology, and brain imaging, and existing perceptual learning applications, with a focus on important theories and computational models. It also compares visual learning to learning in other perceptual domains, and considers the application of visual training methods in the development of perceptual expertise and education as well as in remediation for limiting visual conditions. It provides an integrated treatment of the subject for students and researchers and for practitioners who want to incorporate perceptual learning into their practice.Practice or training in perceptual tasks improves the quality of perceptual performance, often by a substantial amount. This improvement is called perceptual learning, in contrast with learning in the cognitive or motor domains. Perceptual learning has been a very active area of research of both theoretical and practical interest. Research on perceptual learning is of theoretical significance in illuminating plasticity in adult perceptual systems, and in understanding the limitations of human information processing and how to improve them. It is of practical significance as a potential method for the development of perceptual expertise in the normal population, for its potential in advancing development and supporting healthy aging, and for noninvasive amelioration of deficits in challenged populations by training. Perceptual learning has become an increasingly important topic in biomedical research. Practitioners in this area include science disciplines such as psychology, neuroscience, computer sciences, and optometry, and developers in applied areas of learning game design, cognitive development and aging, and military and biomedical applications. Commercial development of training products, protocols, and games is a multi-billion dollar industry. Perceptual learning provides the basis for many of the developments in these areas. This book is written for anyone who wants to understand the phenomena and theories of perceptual learning or to apply the technology of perceptual learning to the development of training methods and products. Our aim is to provide an introduction to those researchers and students just entering this exciting field, to provide a comprehensive and integrated treatment of the phenomena and the theories of perceptual learning for active perceptual learning researchers, and to describe and develop the basic techniques and principles for readers who want to successfully incorporate perceptual learning into applied developments. The book considers the special challenges of perceptual learning that balance the competing goals of system stability and system adaptability. It provides a systematic treatment of the major phenomena and models in perceptual learning, the determinants of successful learning and of specificity and transfer. The book provides a cohesive consideration of the broad range of perceptual learning through the theoretical framework of incremental learning of reweighting evidence that supports successful task performance. It provides a detailed analysis of the mechanisms by which perceptual learning improves perceptual limitations, the relationship of perceptual learning and the critical period of development, and the semi-supervised modes of learning that dominate perceptual learning. It considers limitations and constraints on learning multiple tasks and stimuli simultaneously, the implications of training at high or low levels of performance accuracy, and the importance of feedback to perceptual learning. The basis of perceptual learning in physiology is discussed along with the relationship of visual perceptual learning to learning in other sensory domains. The book considers the applications of perceptual learning in the development of expertise, in education and gaming, in training during development and aging, and applications to remediation of mental health and vision disorders. Finally, it applies the phenomena and models of perceptual learning to considerations of optimizing training.