A Guide to Classical and Modern Model Theory


Book Description

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.







Modern Classical Homotopy Theory


Book Description

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.







Classical and Modern Social Theory


Book Description

Classical and Modern Social Theory is comprehensive introduction to the field, covering a wide historical range of thinkers, from the classical to the postmodernist, as well as key themes in social theory and a guide to the major debates. Designed for students with little or no background in social theory, this single volume covering both classic and contemporary theory introduces the basic concepts at the center of social theory in accessible language and provides readers with a useful reference source to the field.




Classical and New Paradigms of Computation and their Complexity Hierarchies


Book Description

The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.




Handbook of Practical Logic and Automated Reasoning


Book Description

The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.




Reasoning in Quantum Theory


Book Description

"Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.




Modeling with Rules Using Semantic Knowledge Engineering


Book Description

This book proposes a consistent methodology for building intelligent systems. It puts forward several formal models for designing and implementing rules-based systems, and presents illustrative case studies of their applications. These include software engineering, business process systems, Semantic Web, and context-aware systems on mobile devices. Rules offer an intuitive yet powerful method for representing human knowledge, and intelligent systems based on rules have many important applications. However, their practical development requires proper techniques and models - a gap that this book effectively addresses.




Topological and Algebraic Structures in Fuzzy Sets


Book Description

This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook", namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas.