A Guide to Phospholipid Chemistry


Book Description

"A Guide to Phospholipid Chemistry" provides an introduction to phospholipid chemistry for graduate students and practicing research scientists who are encountering these compounds for the first time. Hanahan describes the methodology for recovering lipids intact from cells or tissues and emphasis is placed on the analytical methodology for assay of phospholipids, together with a detailed description of the routes to their proof of structure. Written in a simple and straightforward manner with several "hands-on" examples that can be followed easily in any laboratory, this book will be beneficial not only to professionals but to graduate students as well.




A Guide to Phospholipid Chemistry


Book Description

This book provides a concise introduction to phospholipid chemistry and is intended for a broad audience of biologists, biochemists, and graduate students. Developed as part of a graduate course on lipids, this book also serves as a reference for laboratory investigators on signal transduction and biological membranes. The first part of the text is devoted to an orientation to the chemical nature of lipids in general, how they are thought to be associated in the cell, and the methodology by which the cellular lipids (including the phospholipids) can be recovered from cells and subjected to an initial identification. Subsequent chapters characterize the choline-containing phospholipids, including the sphingolipids, the non-choline containing phospholipids, and finally, the so-called minor phospholipids. The latter compounds, which act as agonists or lipid chemical mediators on cells, form a vanguard of a new category of biologically active substances and have set the study of cellular phospholipids on a new and exiting course. Most importantly, this book provides a basis for further inquiry on these complicated molecules, showing that although the compounds are unique, with care and understanding, they can be studied with ease




Phospholipids Handbook


Book Description

Employing a multidisciplinary approach to phospholipid research, this work catalogues the current knowledge of this class of molecules and details the general, chemical, physical and structural properties of phospholipid monolayers and bilayers. Phospholipid applications are also covered.







Phospholipids


Book Description




Lipid Handbook


Book Description




Phospholipids


Book Description

The book discusses the essential chemistry of phospholipids along with an account of the metabolism. The phospholipases and phospholipase A2 is explained since its structure and the mechanism of its action have been investigated in greater detail than any other phospholipid metabolising enzyme. The increasingly important topic of phospholipid exchange proteins is also treated. Furthermore, since the use of biochemically defined mutants shows great promise for the better understanding of phospholipid biosynthesis and function, the book also discusses genetic control of the enzymes involved.




The Lipid Handbook, Second Edition


Book Description

A great deal of research has been carried out on this important class of compounds in the last ten years. To ensure that scientists are kept up to date, the editors of the First Edition of The Lipid Handbook have completely reviewed and extensively revised their highly successful original work. The Lipid Handbook: Second Edition is an indispensable resource for anyone working with oils, fats, and related substances.




Fatty Acid and Lipid Chemistry


Book Description

This book has a pedigree. It has developed from earlier publications by the author and from his experience over 50 years in reading, writing, thinking, and working with lipids and fatty acids. The earlier publications are: (i) An Introduction to the Chemistry of Fats and Fatty Acids, Chapman and Hall, 1958. (ii) An Introduction to the Chemistry and Biochemistry of Fatty Acids and their Glycerides, Chapman and Hall, 1967. (iii) Lipids in Foods: Chemistry, Biochemistry, and Technology (with F. A. Norris), Pergamon Press, 1983. (iv) The Lipid Handbook (with J. L. Harwood and F. B. Padley), Chapman and Hall, first edition 1986, second edition 1994. (v) A Lipid Glossary (with B. G. Herslof), The Oily Press, Dundee, 1992. (vi) Lecture notes for a course on Fatty Acids and Lipids designed for those entering the oil and fat industry and given on over 20 occasions since 1977. The book is dedicated to the next generation of lipid scientists. The study of lipids now involves many disciplines, all of which require a basic knowledge of the chemical nature and properties of these molecules, which is what this book is about. It is written particularly for those who, with some knowledge of chemistry or biochemistry, need to know more about the nature of lipids and fatty acids.




Lipid Biochemistry


Book Description

Lipids can usually be extracted easily from tissues by making use of their hydrophobic characteristics. However, such extractions yield a complex mixture of different lipid classes which have to be purified further for quantitative analysis. Moreover, the crude lipid extract will be contami nated by other hydrophobic molecules, e.g. by intrinsic membrane proteins. Of the various types of separation processes, thin layer and column chromatography are most useful for intact lipids. High performance liquid chromatography (HPLC) is also rapidly becoming more popular, especially for the fractionation of molecular species of a given lipid class. The most powerful tool for quantitation of the majority of lipids is gas liquid chromatography (GLC). The method is very sensitive and, if adapted with capillary columns, can provide information with regard to such subtle features as the position or configuration of substitutions along acyl chains. By coupling GLC or HPLC to a radioactivity detector, then the techniques are also very useful for metabolic measurements. Although research laboratories use generally sophisticated analytical methods such as GLC to analyse and quantify lipid samples, chemical derivatie:ations are often used in hospitals. For these methods, the lipid samples are derivatized to yield a product which can be measured simply and accurately-usually by colour. Thus, total triacylglycerol, cholesterol or phospholipid-phosphorus can be quantitated conveniently without bothering with the extra information of molecular species, etc. which might be determined by more thorough analyses. REFERENCES Christie, w.w. (1982) Lipid Analysis, 2nd edn, Pergamon Press, Oxford.