A. Haar Memorial Conference


Book Description




A. Haar Memorial Conference


Book Description




A. Haar Memorial Conference


Book Description




Sampling Theory, a Renaissance


Book Description

Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.




Function Spaces and Applications


Book Description

This seminar is a loose continuation of two previous conferences held in Lund (1982, 1983), mainly devoted to interpolation spaces, which resulted in the publication of the Lecture Notes in Mathematics Vol. 1070. This explains the bias towards that subject. The idea this time was, however, to bring together mathematicians also from other related areas of analysis. To emphasize the historical roots of the subject, the collection is preceded by a lecture on the life of Marcel Riesz.




Applications of Algebraic Geometry to Coding Theory, Physics and Computation


Book Description

An up-to-date report on the current status of important research topics in algebraic geometry and its applications, such as computational algebra and geometry, singularity theory algorithms, numerical solutions of polynomial systems, coding theory, communication networks, and computer vision. Contributions on more fundamental aspects of algebraic geometry include expositions related to counting points on varieties over finite fields, Mori theory, linear systems, Abelian varieties, vector bundles on singular curves, degenerations of surfaces, and mirror symmetry of Calabi-Yau manifolds.




Topics in Multivariate Approximation


Book Description

Topics in Multivariate Approximation contains the proceedings of an international workshop on multivariate approximation held at the University of Chile in Santiago, Chile, on December 15-19, 1986. Leading researchers in the field discussed several problem areas related to multivariate approximation and tackled topics ranging from multivariate splines and fitting of scattered data to tensor approximation methods and multivariate polynomial approximation. Numerical grid generation and finite element methods were also explored, along with constrained interpolation and smoothing. Comprised of 22 chapters, this book first describes the application of Boolean methods of approximation in combination with the theory of right invertible operators to bivariate Fourier expansions. The reader is then introduced to ill-posed problems in multivariate approximation; interpolation of scattered data by radial functions; and shape-preserving surface interpolation. Subsequent chapters focus on approximation by harmonic functions; numerical generation of nested series of general triangular grids; triangulation methods; and inequalities arising from best local approximations in rectangles. A bibliography of multivariate approximation concludes the book. This monograph will be of interest to mathematicians.




Computational Geometry


Book Description

Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry based on invited lectures and contributed papers presented during the program on computational geometry at the Morningside Center of Mathematics at the Chinese Academy of Sciences (Beijing). The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in detail in the volume. Topics of the other articles include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and more. The book is suitable for graduate students and researchers interested in computational geometry and specialists in theoretical computer science.




Computer Mathematics - Proceedings Of The Fifth Asian Symposium (Ascm 2001)


Book Description

This volume covers some of the most recent and significant advances in computer mathematics, including algebraic, symbolic, numeric and geometric computation, automated mathematical reasoning, mathematical software and computer-aided geometric design. Researchers, engineers, academics and graduate students interested in doing mathematics using computers will find this volume good reading and a valuable reference.




Walsh Equiconvergence of Complex Interpolating Polynomials


Book Description

This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.