A History of Probability and Statistics and Their Applications before 1750


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource." –Short Book Reviews of ISI




A History of Mathematical Statistics from 1750 to 1930


Book Description

The long-awaited second volume of Anders Hald's history of the development of mathematical statistics. Anders Hald's A History of Probability and Statistics and Their Applications before 1750 is already considered a classic by many mathematicians and historians. This new volume picks up where its predecessor left off, describing the contemporaneous development and interaction of four topics: direct probability theory and sampling distributions; inverse probability by Bayes and Laplace; the method of least squares and the central limit theorem; and selected topics in estimation theory after 1830. In this rich and detailed work, Hald carefully traces the history of parametric statistical inference, the development of the corresponding mathematical methods, and some typical applications. Not surprisingly, the ideas, concepts, methods, and results of Laplace, Gauss, and Fisher dominate his account. In particular, Hald analyzes the work and interactions of Laplace and Gauss and describes their contributions to modern theory. Hald also offers a great deal of new material on the history of the period and enhances our understanding of both the controversies and continuities that developed between the different schools. To enable readers to compare the contributions of various historical figures, Professor Hald has rewritten the original papers in a uniform modern terminology and notation, while leaving the ideas unchanged. Statisticians, probabilists, actuaries, mathematicians, historians of science, and advanced students will find absorbing reading in the author's insightful description of important problems and how they gradually moved toward solution.







A History of Inverse Probability


Book Description

It is thought as necessary to write a Preface before a Book, as it is judged civil, when you invite a Friend to Dinner, to proffer him a Glass of Hock beforehand for a Whet. John Arbuthnot, from the preface to his translation of Huygens's "De Ratiociniis in Ludo Alooe". Prompted by an awareness of the importance of Bayesian ideas in modern statistical theory and practice, I decided some years ago to undertake a study of the development and growth of such ideas. At the time it seemed appropriate to begin such an investigation with an examination of Bayes's Essay towards solving a problem in the doctrine of chances and Laplace's Theorie analytique des probabilites, and then to pass swiftly on to a brief consideration of other nineteenth century works before turning to what would be the main topic of the treatise, videlicet the rise of Bayesian statis tics from the 1950's to the present day. It soon became apparent, however, that the amount of Bayesian work published was such that a thorough investigation of the topic up to the 1980's would require several volumes - and also run the risk of incurring the wrath of extant authors whose writings would no doubt be misrepre sented, or at least be so described. It seemed wise, therefore, to restrict the period and the subject under study in some way, and I decided to con centrate my attention on inverse probability from Thomas Bayes to Karl Pearson.




The History of Statistics


Book Description

This magnificent book is the first comprehensive history of statistics from its beginnings around 1700 to its emergence as a distinct and mature discipline around 1900. Stephen M. Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences including astronomy, geodesy, experimental psychology, genetics, and sociology. He addresses many intriguing questions: How did scientists learn to combine measurements made under different conditions? And how were they led to use probability theory to measure the accuracy of the result? Why were statistical methods used successfully in astronomy long before they began to play a significant role in the social sciences? How could the introduction of least squares predate the discovery of regression by more than eighty years? On what grounds can the major works of men such as Bernoulli, De Moivre, Bayes, Quetelet, and Lexis be considered partial failures, while those of Laplace, Galton, Edgeworth, Pearson, and Yule are counted as successes? How did Galton’s probability machine (the quincunx) provide him with the key to the major advance of the last half of the nineteenth century? Stigler’s emphasis is upon how, when, and where the methods of probability theory were developed for measuring uncertainty in experimental and observational science, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences. He describes with care the scientific context in which the different methods evolved and identifies the problems (conceptual or mathematical) that retarded the growth of mathematical statistics and the conceptual developments that permitted major breakthroughs. Statisticians, historians of science, and social and behavioral scientists will gain from this book a deeper understanding of the use of statistical methods and a better grasp of the promise and limitations of such techniques. The product of ten years of research, The History of Statistics will appeal to all who are interested in the humanistic study of science.




The Art of Conjecturing, Together with Letter to a Friend on Sets in Court Tennis


Book Description

"Part I reprints and reworks Huygens's On Reckoning in Games of Chance. Part II offers a thorough treatment of the mathematics of combinations and permutations, including the numbers since known as "Bernoulli numbers." In Part III, Bernoulli solves more complicated problems of games of chance using that mathematics. In the final part, Bernoulli's crowning achievement in mathematical probability becomes manifest he applies the mathematics of games of chance to the problems of epistemic probability in civil, moral, and economic matters, proving what we now know as the weak law of large numbers."







PROBABILITY AND STATISTICS - Volume I


Book Description

Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs




The R Book


Book Description

The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.




A History of the Central Limit Theorem


Book Description

This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.