An Introduction to the Theory of Elasticity


Book Description

Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.










Sophie Germain


Book Description

Why should the story of a woman's role in the development of a scientific theory be written? Is it to celebrate, as some have done, the heroism of a woman's struggle in a man's world? Or is it, rather~to demonstrate that gender is irrelevant to the march of scientific ideas? This book hopes to do neither. Rather, it intends to do justice both to the professional life of a woman in science and to the development of the theory with which she was engaged. Technically, this essay centers on Sophie Germain's analysis of the modes of vibration of elastic surfaces, work which won a competition set by the French Academy of Sciences in 1809. It also evaluates related work on the mathematical theory of elasticity done by men of the Academy. Biographically, it is about a woman who believed in the greatness of science and strove, with some measure of success, to participate in that noble, but wholly male-dominated, enterprise. It explores her failures, analyzes her success, and describes how the members of the Parisian scientific community dealt with her offerings, contributions and demands.




A History of the Theory of Elasticity and of the Strength of Materials


Book Description

A distinguished mathematician and notable university teacher, Isaac Todhunter (1820-84) became known in his time for his successful textbooks. Edited and completed by Karl Pearson (1857-1936), and published between 1886 and 1893, this three-part work traces the mathematical understanding of elasticity from Galileo to Lord Kelvin.







Strength of Materials and Theory of Elasticity in 19th Century Italy


Book Description

This book examines the theoretical foundations underpinning the field of strength of materials/theory of elasticity, beginning from the origins of the modern theory of elasticity. While the focus is on the advances made within Italy during the nineteenth century, these achievements are framed within the overall European context. The vital contributions of Italian mathematicians, mathematical physicists and engineers in respect of the theory of elasticity, continuum mechanics, structural mechanics, the principle of least work and graphical methods in engineering are carefully explained and discussed. The book represents a work of historical research that primarily comprises original contributions and summaries of work published in journals. It is directed at those graduates in engineering, but also in architecture, who wish to achieve a more global and critical view of the discipline and will also be invaluable for all scholars of the history of mechanics.




History of Strength of Materials


Book Description

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.




THEORY OF ELASTICITY AND PLASTICITY


Book Description

Theory of Elasticity and Plasticity is designed as a textbook for both undergraduate and postgraduate students of engineering in civil, mechanical and aeronautical disciplines. This book has been written with the objective of bringing the concepts of elasticity and plasticity to the students in a simplified and comprehensive manner. The basic concepts, definitions, theory as well as practical applications are discussed in a clear, logical and concise manner for better understanding. Starting with, general relationships between stress, strain and deformations, the book deals with specific problems on plane stress, plane strain and torsion in non-circular sections. Advanced topics such as membrane analogy, beams on elastic foundations and plastic analysis of pressure vessels are also discussed elaborately. For better comprehension, the text is well supported with:  Large number of worked-out examples in each chapter.  Well-labelled illustrations.  Numerous Review Questions that reinforce the understanding of the subject. As all the concepts are covered extensively with a blend of theory and practice, this book will be a useful resource to the students.