A learning-based computer vision approach for the inference of articulated motion


Book Description

Computer vision approaches to human motion analysis have received considerable attention from different research areas over the past couple of years. The strong interest is largely due to their various applications in surveillance, driver assistance systems, human-computer interfaces, marker-less motion capture, biomedical engineering and computer graphics. This thesis investigates the computational integration of different visual representations for the detection of human bodies and the analysis of their movements in both indoor and unconstrained outdoor envi-ronments. New image coding schemes are presented in combination with methods from machine learning and dynamic filtering to address issues of complexity, robustness and generalization.




Machine Learning for Vision-Based Motion Analysis


Book Description

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.







Computer Vision – ECCV 2018


Book Description

The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.




Intelligent Video Surveillance


Book Description

From the streets of London to subway stations in New York City, hundreds of thousands of surveillance cameras ubiquitously collect hundreds of thousands of videos, often running 24/7. How can such vast volumes of video data be stored, analyzed, indexed, and searched? How can advanced video analysis and systems autonomously recognize people and




Computer Vision – ECCV 2018 Workshops


Book Description

The six-volume set comprising the LNCS volumes 11129-11134 constitutes the refereed proceedings of the workshops that took place in conjunction with the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.43 workshops from 74 workshops proposals were selected for inclusion in the proceedings. The workshop topics present a good orchestration of new trends and traditional issues, built bridges into neighboring fields, and discuss fundamental technologies and novel applications.




Computer Vision - ECCV 2004


Book Description

The four-volume set comprising LNCS volumes 3021/3022/3023/3024 constitutes the refereed proceedings of the 8th European Conference on Computer Vision, ECCV 2004, held in Prague, Czech Republic, in May 2004. The 190 revised papers presented were carefully reviewed and selected from a total of 555 papers submitted. The four books span the entire range of current issues in computer vision. The papers are organized in topical sections on tracking; feature-based object detection and recognition; geometry; texture; learning and recognition; information-based image processing; scale space, flow, and restoration; 2D shape detection and recognition; and 3D shape representation and reconstruction.




Computer Vision


Book Description

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. • Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry • A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking • More than 70 algorithms are described in sufficient detail to implement • More than 350 full-color illustrations amplify the text • The treatment is self-contained, including all of the background mathematics • Additional resources at www.computervisionmodels.com




Advanced Concepts for Intelligent Vision Systems


Book Description

This book constitutes the refereed proceedings of the 13th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2011, held in Ghent, Belgium, in August 2011. The 66 revised full papers presented were carefully reviewed and selected from 124 submissions. The papers are organized in topical sections on classification recognition, and tracking, segmentation, images analysis, image processing, video surveillance and biometrics, algorithms and optimization; and 3D, depth and scene understanding.