A Macroscopic Traffic Flow Model for Adverse Weather Conditions


Book Description

Adverse weather has a direct effect on traffic congestion and the time delay on roads. Weather conditions today are changing rapidly and are more likely to have a severe effect on traffic in the future. Although different measures have been taken to mitigate these conditions, it is important to study the impact of these events on road conditions and traffic flow. For example, the surface of a road is affected by snow, compacted snow and ice. The objective of this thesis is to characterize the effect of road surface conditions on traffic flow. To date, traffic flow under adverse weather conditions has not been characterized. A macroscopic traffic flow model based on the transition velocity distribution is proposed which characterizes traffic behavior during traffic alignment under adverse weather conditions. The model proposed realistically characterizes the traffic flow based on snow, compacted snow, and ice. Results are presented which show that this model provides a more accurate characterization of traffic flow behavior than the well known Payne-Whitham model.




Impact of Weather Conditions on Macroscopic Traffic Stream Variables in an Intelligent Transportation System


Book Description

Accurate prediction of the macroscopic traffic stream variables such as speed and flow is essential for the traffic operation and management in an Intelligent Transportation System (ITS). Adverse weather conditions like fog, rainfall, and snowfall affect the driver's visibility, vehicle's mobility, and road capacity. Accurate traffic forecasting during inclement weather conditions is a non-linear and complex problem as it involves various hidden features such as time of the day, road characteristics, drainage quality, etc. With recent computational technologies and huge data availability, such a problem is solved using data-driven approaches. Traditional data-driven approaches used shallow architecture which ignores the hidden influencing factor and is proved to have limitations in a high dimensional traffic state. Deep learning models are proven to be more accurate for predicting traffic stream variables than shallow models because they extract the hidden features using the layerwise architecture. The impact of weather conditions on traffic is dependent on various hidden features. The rainfall effect on traffic is not directly proportional to the distance between the weather stations and the road segment because of terrain feature constraints. The prolonged rainfall weakens the drainage system, affects soil absorption capability, which causes waterlogging. Therefore, to capture the spatial and prolonged impact of weather conditions, we proposed the soft spatial and temporal threshold mechanism. Another concern with weather data is the traffic data has a high spatial and temporal resolution compared to it. Therefore, missing weather data is difficult to ignore, the spatial interpolation techniques such as Theissen polygon, inverse distance weighted method, and linear regression methods are used to fill out the missing weather data. i













Selection of Traffic Controls for Severe Weather Conditions


Book Description

This manual provides guidelines for the selection of traffic controls to reduce the hazards created by severe weather conditions to travel on limited-access highways. Analytical techniques are described in procedural format, along with worksheets, for use by traffic engineers in quantifying the extent of the accident or delay hazard created by extreme weather conditions. A methodology for selection of the most appropriate traffic control is presented based on estimating the level of effectiveness that must be achieved by a control in order to be cost effective. Summary descriptions of traffic controls implemented by the States under various adverse weather conditions, and a comprehensive annotated bibliography are provided in appendices to the report.







Traffic Flow Dynamics


Book Description

This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.




Effects of Adverse Winter Weather Conditions on Highway Traffic and Driver Behavior


Book Description

"This research looks into the impact of adverse winter weather conditions on highway driver behaviors using microscopic data from loop detectors and video cameras (e.g., hourly average speed, trajectories, lane changes, time-to-collisions measures). This thesis is composed of two main sections in addition to the introductory section: i) direct and lagged effects of adverse weather on hourly speeds and volumes; and ii) direct effect of adverse weather on driver behaviors (microscopic) measured at the vehicle level using video data. The first part of the thesis presents a review of literature related to past research on the topic. The second part investigates the direct and lagged effects of adverse winter weather conditions on the operating speed in a number of highway segments in Ontario using a time-series approach. This is complemented by the analysis of hourly traffic volumes in the region of Montreal, Canada, using data from magnetic loop detectors as well. In speed modeling, the effect of adverse weather was studied using data from multiple sites including both urban and rural highways, considering weekdays versus weekends separately. For this purpose, a large dataset containing hourly traffic data, weather variables (e.g., temperature, snow, wind speed), and surface conditions was used. A few previous studies have examined the effect of snowstorms on traffic parameters; however, little research has been done regarding the spillover effects (lagged effects) that adverse weather conditions may have on travel demand and traffic patterns. Extreme events or weather conditions might have a strong effect on traffic conditions not only during the events, but also before and after the events. In this study, time-series regression techniques -- in particular, Autoregressive Integrated Moving Average (ARIMA) models were used to model the highway operating speed. These methods are able to consider the serial correlation among error terms. The results indicate that snowstorms have a statistically significant effect on the speed. The lagged effects are however offset by the time and intensity of winter maintenance operations during and after the event. The effect of weather also varies depending on the type of site (urban or rural) and day of the week. Similarly, the effects of different weather variables including their lagged effects were analyzed using hourly traffic volume data. Despite the fact that information of the road surface condition was not available, this analysis is in accordance with previous finding, showing the utility of ARIMA approaches in modeling the highway volume as well. The results of this study can be applied in quantifying the mobility effect of winter weather and benefits of winter road maintenance. In recent years, driver behavior analysis using microscopic (vehicle level) data is a topic that is attracting more attention in road safety analysis. This popularity has brought about research in many different innovative techniques and microscopic measures used to quantify and analyze driver behavior. In the second part of this thesis, it demonstrates a method of analyzing driver behavior using video data approach. This thesis elucidates both a manual and an automated, computer-based method to analyze driver behavior. It also uses the computer-based method to evaluate the effect of adverse winter weather conditions on the driver behavior of highway users. Both the manual and the automated approaches have been used with 15 video recordings obtained from three different locations on the Don Valley Parkway (DVP) in Toronto, Ontario. The results demonstrate the effectiveness of the automated method in analyzing driver behavior, as well as in evaluating the impact of adverse winter weather conditions on driver behavior." --