Fluctuation Theory for Lévy Processes


Book Description

Lévy processes, that is, processes in continuous time with stationary and independent increments, form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, and of course finance, where they include particularly important examples having "heavy tails." Their sample path behaviour poses a variety of challenging and fascinating problems, which are addressed in detail.




Fluctuations of Lévy Processes with Applications


Book Description

Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.




Séminaire de Probabilités XXXVIII


Book Description

Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.




Séminaire de Probabilités XLI


Book Description

Stochastic processes are as usual the main subject of the Séminaire, with contributions on Brownian motion (fractional or other), Lévy processes, martingales and probabilistic finance. Other probabilistic themes are also present: large random matrices, statistical mechanics. The contributions in this volume provide a sampling of recent results on these topics. All contributions with the exception of two are written in English language.




LNM


Book Description

Contents of 1-14 (1966/67-1978/79) in v. 15 (1979/80)




Mathematical Reviews


Book Description




Financial Modelling with Jump Processes


Book Description

WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic




Lévy Matters II


Book Description

This is the second volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters, which is published at irregular intervals over the years. Each volume examines a number of key topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world. The expository articles in this second volume cover two important topics in the area of Lévy processes. The first article by Serge Cohen reviews the most important findings on fractional Lévy fields to date in a self-contained piece, offering a theoretical introduction as well as possible applications and simulation techniques. The second article, by Alexey Kuznetsov, Andreas E. Kyprianou, and Victor Rivero, presents an up to date account of the theory and application of scale functions for spectrally negative Lévy processes, including an extensive numerical overview.




Gerber–Shiu Risk Theory


Book Description

Motivated by the many and long-standing contributions of H. Gerber and E. Shiu, this book gives a modern perspective on the problem of ruin for the classical Cramér–Lundberg model and the surplus of an insurance company. The book studies martingales and path decompositions, which are the main tools used in analysing the distribution of the time of ruin, the wealth prior to ruin and the deficit at ruin. Recent developments in exotic ruin theory are also considered. In particular, by making dividend or tax payments out of the surplus process, the effect on ruin is explored. Gerber-Shiu Risk Theory can be used as lecture notes and is suitable for a graduate course. Each chapter corresponds to approximately two hours of lectures.




A Lifetime of Excursions Through Random Walks and Lévy Processes


Book Description

This collection honours Ron Doney’s work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney’s mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Lévy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.