A Mathematician's Lament


Book Description

“One of the best critiques of current mathematics education I have ever seen.”—Keith Devlin, math columnist on NPR’s Morning Edition A brilliant research mathematician who has devoted his career to teaching kids reveals math to be creative and beautiful and rejects standard anxiety-producing teaching methods. Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike and it will alter the way we think about math forever. Paul Lockhart, has taught mathematics at Brown University and UC Santa Cruz. Since 2000, he has dedicated himself to K-12 level students at St. Ann’s School in Brooklyn, New York.




Measurement


Book Description

For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.




Arithmetic


Book Description

Paul Lockhart reveals arithmetic not as the rote manipulation of numbers but as a set of ideas that exhibit the surprising behaviors usually reserved for higher branches of mathematics. In this entertaining survey, he explores the nature of counting and different number systems—Western and non-Western—and weighs the pluses and minuses of each.




Mathematics Miseducation


Book Description

Here, Derek Stolp suggests practical changes that can be implemented within a traditional school environment to resuscitate mathematics education.




The Numbers Behind NUMB3RS


Book Description

The companion to the hit CBS crime series Numb3rs presents the fascinating way mathematics is used to fight real-life crime Using the popular CBS prime-time TV crime series Numb3rs as a springboard, Keith Devlin (known to millions of NPR listeners as the Math Guy on NPR's Weekend Edition with Scott Simon) and Gary Lorden (the principal math advisor to Numb3rs) explain real-life mathematical techniques used by the FBI and other law enforcement agencies to catch and convict criminals. From forensics to counterterrorism, the Riemann hypothesis to image enhancement, solving murders to beating casinos, Devlin and Lorden present compelling cases that illustrate how advanced mathematics can be used in state-of-the-art criminal investigations.




The Great Mental Models, Volume 1


Book Description

Discover the essential thinking tools you’ve been missing with The Great Mental Models series by Shane Parrish, New York Times bestselling author and the mind behind the acclaimed Farnam Street blog and “The Knowledge Project” podcast. This first book in the series is your guide to learning the crucial thinking tools nobody ever taught you. Time and time again, great thinkers such as Charlie Munger and Warren Buffett have credited their success to mental models–representations of how something works that can scale onto other fields. Mastering a small number of mental models enables you to rapidly grasp new information, identify patterns others miss, and avoid the common mistakes that hold people back. The Great Mental Models: Volume 1, General Thinking Concepts shows you how making a few tiny changes in the way you think can deliver big results. Drawing on examples from history, business, art, and science, this book details nine of the most versatile, all-purpose mental models you can use right away to improve your decision making and productivity. This book will teach you how to: Avoid blind spots when looking at problems. Find non-obvious solutions. Anticipate and achieve desired outcomes. Play to your strengths, avoid your weaknesses, … and more. The Great Mental Models series demystifies once elusive concepts and illuminates rich knowledge that traditional education overlooks. This series is the most comprehensive and accessible guide on using mental models to better understand our world, solve problems, and gain an advantage.




Plato's Ghost


Book Description

Plato's Ghost is the first book to examine the development of mathematics from 1880 to 1920 as a modernist transformation similar to those in art, literature, and music. Jeremy Gray traces the growth of mathematical modernism from its roots in problem solving and theory to its interactions with physics, philosophy, theology, psychology, and ideas about real and artificial languages. He shows how mathematics was popularized, and explains how mathematical modernism not only gave expression to the work of mathematicians and the professional image they sought to create for themselves, but how modernism also introduced deeper and ultimately unanswerable questions. Plato's Ghost evokes Yeats's lament that any claim to worldly perfection inevitably is proven wrong by the philosopher's ghost; Gray demonstrates how modernist mathematicians believed they had advanced further than anyone before them, only to make more profound mistakes. He tells for the first time the story of these ambitious and brilliant mathematicians, including Richard Dedekind, Henri Lebesgue, Henri Poincaré, and many others. He describes the lively debates surrounding novel objects, definitions, and proofs in mathematics arising from the use of naïve set theory and the revived axiomatic method—debates that spilled over into contemporary arguments in philosophy and the sciences and drove an upsurge of popular writing on mathematics. And he looks at mathematics after World War I, including the foundational crisis and mathematical Platonism. Plato's Ghost is essential reading for mathematicians and historians, and will appeal to anyone interested in the development of modern mathematics.




The Survival of a Mathematician


Book Description

"One of the themes of the book is how to have a fulfilling professional life. In order to achieve this goal, Krantz discusses keeping a vigorous scholarly program going and finding new challenges, as well as dealing with the everyday tasks of research, teaching, and administration." "In short, this is a survival manual for the professional mathematician - both in academics and in industry and government agencies. It is a sequel to the author's A Mathematician's Survival Guide."--BOOK JACKET.




Mathematics for Human Flourishing


Book Description

"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.




Teaching Problems and the Problems of Teaching


Book Description

In this book an experienced classroom teacher and noted researcher on teaching takes us into her fifth grade math class through the course of a year. Magdalene Lampert shows how classroom dynamics--the complex relationship of teacher, student, and content--are critical in the process of bringing each student to a deeper understanding of mathematics, or any other subject. She offers valuable insights into students and teaching for all who are concerned about improving the learning that happens in the classroom. Lampert considers the teacher's and students' work from many different angles, in views large and small. She analyzes her own practice in a particular classroom, student by student and moment by moment. She also investigates the particular kind of teaching that aims at engaging elementary school students in learning fundamentally important ideas and skills by working on problems. Finally, she looks at the common problems of teaching that occur regardless of the individuals, subject matter, or kinds of practice involved. Lampert arrives at an original model of teaching practice that casts new light on the complexity in teachers' work and on the ways teachers can successfully deal with teaching problems.