Particle Physics Reference Library


Book Description

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Heavy Flavours


Book Description

This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics within the Standard Model and its confrontation with existing experimental data.The physics of the top quark and of the Higgs play an important role in this volume. Beginning with radiative electroweak corrections and their impressive tests at LEP and hadron colliders, the book summarizes the present status of quark mixing, CP violation and rare decays. The dynamics of exclusive D- and B-meson decays, the τ-lepton physics and the newly discovered heavy quark symmetries are discussed in detail. The impact of strong interactions on weak decays is clearly visible in many articles. The physics of heavy flavours at LEP, HERA and hadron colliders constitutes an important part of the book. Another significant topic is the possible role of heavy flavours in the spontaneous symmetry breaking of gauge symmetries. Finally the most recent advances in lattice calculations of the properties of heavy flavours and the lattice studies of the dynamics of heavy flavours are presented.




Studies of CP-Violation in Charmless Three-Body b-Hadron Decays


Book Description

This book highlights two essential analyses of data collected during the LHCb experiment, based on the Large Hadron Collider at CERN. The first comprises the first observation and studies of matter-antimatter asymmetries in two three-body b-baryon decays, paving the way for more precise measurements of the relatively unknown decay properties of b-baryon decays. The second is an analysis of a charged B meson decay to three charged pions, where previously large matter-antimatter asymmetries were observed in a model-independent analysis. Here a model of the decay amplitude is constructed using the unitarity-conserving ‘K-matrix’ model for the scalar contributions, so as to gain an understanding of how the previously observed matter-antimatter asymmetries arise; further, the model’s construction yields the most precise and comprehensive study of this decay mode to date.




Hadron Spectroscopy And Structure - Proceedings Of The Xviii International Conference


Book Description

This is the conference proceedings for the 18th International Conference on Hadron Spectroscopy and Structure (HADRON2019), held in Guilin, China. It is among the most important conference series in the field of hadron spectroscopy and structure. Collecting more than 130 contributions from this conference, the book spans over the topics of meson and baryon spectroscopy, exotic hadrons, hadron production and interactions, analysis tools, QCD and hadron structure, hadrons in nuclear environment and hypernuclei. Summaries of the recent discoveries from Belle, BESIII, LHCb and other high-energy experiments, as well as recent theoretical developments in the above mentioned topics, are contained in this volume, rendering it as a valuable resource for researchers working on hadron spectroscopy and structure.




Introduction to Elementary Particles


Book Description




Nuclear and Particle Physics


Book Description

An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.




Particle Physics


Book Description

An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the ‘compendium’ style physics books. In the Third Edition the standard model of particle physics is carefully developed whilst unnecessary mathematical formalism is avoided where possible. Emphasis is placed on the interpretation of experimental data in terms of the basic properties of quarks and leptons. One of the major developments of the past decade has been the establishing of the existence of neutrino oscillations. This will have a profound effect on the plans of experimentalists. This latest edition brings the text fully up-to-date, and includes new sections on neutrino physics, as well as expanded coverage of detectors, such as the LHC detector. End of chapter problems with a full set of hints for their solutions provided at the end of the book. An accessible and carefully structured introduction to this demanding subject. Includes more advanced material in optional ‘starred’ sections. Coverage of the foundations of the subject, as well as the very latest developments.




The Physics of the B Factories


Book Description

This comprehensive work thoroughly introduces and reviews the set of results from Belle and BaBar - after more than two decades of independent and complementary work - all the way from the detectors and the analysis tools used, up to the physics results, and the interpretation of these results. The world’s two giant B Factory collaborations, Belle at KEK and BaBar at SLAC, have successfully completed their main mission to discover and quantify CP violation in the decays of B mesons. CP violation is a necessary requirement to distinguish unambiguously between matter and antimatter. The shared primary objective of the two B Factory experiments was to determine the shape of the so-called unitarity triangle, an abstract triangle representing interactions of quarks, the elementary constituents of matter. The area of the triangle is a measure of the amount of CP violation associated with the weak force. Many other measurements have been performed by the B Factories and are also discussed in this work.




Introduction to Particle and Astroparticle Physics


Book Description

This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used as a self-training book, a consultation book, or a textbook providing a “modern” approach to particles and fundamental interactions.




The Anomalous Magnetic Moment of the Muon


Book Description

This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.