A Method for Optimizing Power and Throughput Metrics for Mobile Ad Hoc Wireless Routing Algorithms


Book Description

Mobile ad hoc networks (MANET) are becoming increasingly popular, particularly in the realm of sensor networks. Most of the ongoing research of these networks is centered on protocol development and data delivery characteristics, particularly in the areas of throughput and latency. But in the realm of wireless networks, a new metric needs to be considered, one that takes into consideration the power efficiency across the wireless network. This thesis addresses this need by defining a new network performance metric that incorporates aspects of both power efficiency and data throughput. The new metric is a reflection of the performance of the routing protocol being evaluated for a particular network scenario. Comparing the metric values for different network routing protocols allow for the optimal network routing protocol for the particular network scenario to be identified. Wireless nodes have a finite amount of energy to operate with, and when that energy is depleted, the node dies and no longer performs its intended functions. In order to maintain a functioning MANET for longer periods of time, the network as a whole needs to consider power efficiency for optimal network lifetime. Some optimization techniques include transmission power, data compression, and even the network protocols used for network connectivity. Several of these techniques are discussed, but this research focuses more on the network routing protocols and the power footprints associated with them. While other researchers are developing power-aware routing algorithms, often by augmenting existing protocols, this thesis develops a methodology of comparing the overall network performance of the routing protocols used for a particular network scenario. Data is gathered through network simulations with ns-3, an open source network simulator. Four common routing protocols are evaluated against several network scenarios. Data collected per simulation includes the network lifetime and data throughput statistics. The data is analyzed in order to find the optimal routing protocol for the particular network scenario. Rather than creating yet another power-aware routing algorithm, this thesis develops a value-function based approach for measuring network performance that incorporates both power efficiency and data throughput.







Ad Hoc Mobile Wireless Networks


Book Description

The authoritative guide to the state of the art in ad hoc wireless networking. Reflects the field's latest breakthroughs Covers media access, routing, service discovery, multicasting, power conservation, transport protocol, and much more Includes a complete narration of prototype implementation with communication performance results from practical field trials Introduces key applications for home, business, auto, and defense "Ad hoc" wireless networks eliminate the complexities of infrastructure setup and administration, enabling devices to create and join networks "on the fly"-anywhere, anytime, for virtually any application. The field is rapidly coming of age, reflecting powerful advances in protocols, systems, and real-world implementation experience. In Ad Hoc Mobile Wireless Networks, one of the field's leading researchers brings together these advances in a single consolidated and comprehensive archive. C.K. Toh covers all this, and more: Key challenges: device heterogeneity, diverse traffic profiles, mobility, and power conservation Routing protocols for ad hoc networks, including Associativity Based Routing (ABR) and other IETF MANET protocols Real-world implementation issues-including a complete prototype implementation Ad hoc wireless network performance: results obtained from the latest field trials Leading approaches to service discovery Addressing TCP over an ad hoc wireless network environment Support for multicast communications The role of Bluetooth and WAP Ad Hoc Mobile Wireless Networks introduces detailed application scenarios ranging from home and car to office and battlefield. C.K. Toh also introduces several of the field's leading projects, from Motorola's PIANO platform to UC Berkeley's "Smart Dust." Whether you're a researcher, scientist, implementer, consultant, technical manager, CTO, or student, you won't find a more authoritative and comprehensive guide to the new state of the art in ad hoc networking.







Algorithms and Optimization for Quality of Experience Aware Routing in Wireless Networks


Book Description

WMNs comprise nodes that are able to receive and forward the data to other destinations in the networks. Consequently, WMNs are able to dynamically self-organize and self-configure [5]. Each node itself creates and maintains the connectivity with its neighbors. The availability of ad-hoc mode on popular IEEE 802.11 allows low-cost implementation of WMNs. Nevertheless, WMNs have two major drawbacks: interference and scalability as discussed in [6]. (D1) Interference : The independent behaviour and arbitrary deployment of nodes in WMNs can create an extremely high interference environment, which leads to degradation in the quality of wireless connections. For instance, the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism of IEEE 802.11 (CSMA/CA) has long delays and low resource utilization in dense networks [7]. Recent advancements in physical (PHY) and medium control access (MAC) layers, such as multiple-input multiple-output (MIMO) and multiple channels MAC, can overcome this challenge. The deployment of some solutions are unable in practice because of specific requirements of hardware. Moreover, some implementations such as multiple channel MAC requires high synchronization, which is difficult in WMNs [8]. (D2) Scalability: Multi-hop communication are able to improve coverage and band-width availability in wireless networks [9]. However, it has scalability issues as discussed in [10, 11]. It means that the performance of networks deteriorates significantly when the size of networks grows. PHY layer may experience an extremely noisy medium, thus causing throughput degradation at MAC layer. Moreover, the noisy environment increases the packet loss rate, which impacts significantly to network and transport layers. The existing solutions at PHY or MAC layer can solve the interference problem mentioned in D1. Meanwhile, the scalability of WMNs could be tackled by routing solutions [11]. Routing algorithms are responsible for computing routes so as to convey data through multiple hops until reaching the destinations. As shown in [11], the shortest-path routes, which are the default solutions of conventional routing algorithms, usually have more interference. The solution, subsequently, is finding other routes that have less interference. These routes could be optimal or sub-optimal with given objectives and arguments. The arguments of routing problems comprise of network-oriented metrics and User-oriented metrics. Network-oriented metrics, also called as Quality of Service (QoS) metrics, are derived from the network directly such as bandwidth, delay, jitter, etc. Meanwhile, User-oriented metrics, also called as Quality of Experience (QoE) metrics, are based on users' experience such as mean opinion score (MOS). They represent the level of satisfaction of a users. The good perception of users is the major objective of video streaming services. Most of existing routing algorithms give routing decisions based on single or combination of network-oriented metrics. For example, the routing algorithms in [12, 13, 14] determine routes based on the bandwidth and congestion. Nevertheless, network-oriented metrics may not be well-correlated to users' experience [15, 16, 17, 18]. In other words, users may not be satisfied even with optimal network-oriented metric routes. As a result, it is necessary to develop routing algorithms that take user-oriented metrics into account. This thesis addresses the routing of video streaming over WMNs and proposes novel routing algorithms. These routing algorithms give routing decisions based on the perception of users. To do that, the proposed solution has to address two challenges as follows :(M1) estimate users' perception in real-time and (M2) find optimal or sub-optimal routes efficiently.




Mutihop Mesh Routing Protocols for Quickness and Reliability


Book Description

Dr.D.Usha, Assistant Professor, Department of Computer Science, Mother Teresa Womens University, Kodaikanal, Tamil Nadu, India







Handbook of Wireless Networks and Mobile Computing


Book Description

The huge and growing demand for wireless communication systems has spurred a massive effort on the parts of the computer science and electrical engineering communities to formulate ever-more efficient protocols and algorithms. Written by a respected figure in the field, Handbook of Wireless Networks and Mobile Computing is the first book to cover the subject from a computer scientist's perspective. It provides detailed practical coverage of an array of key topics, including cellular networks, channel assignment, queuing, routing, power optimization, and much more.




Adoption and Optimization of Embedded and Real-Time Communication Systems


Book Description

Adoption and Optimization of Embedded and Real-Time Communication Systems presents innovative research on the integration of embedded systems, real-time systems and the developments towards multimedia technology. This book is essential for researchers, practitioners, scientists, and IT professionals interested in expanding their knowledge of this interdisciplinary field.




Security and Routing in Wireless Networks


Book Description

With the advance of wireless networks, building reliable and secured network connections is becoming extremely important. On the other hand, ad hoc networks become especially important and have many useful applications. The primary focus of this book is to present these two hot and rapidly evolving areas in wireless networks. Security and scheduling/routing in wireless networks remain challenging research problems due to the complexity involved. How to develop more efficient and reliable wireless networks remains a hot research area. It is this realisation that has motivated the editing of this book. The goal of the book is to serve as a reference for both security in wireless networks and channel access, scheduling, and routing in ad hoc networks. In this book, the authors review important developments and new strategies for these topics. Important features and limitations of methods and models are identified. Consequently, this book can serve as a useful reference for researchers, educators, graduate students, and practitioners in the field of wireless networks. This book contains 14 invited chapters from prominent researchers working in this area around the world. All of the cha