A Mixed Frequency Stochastic Volatility Model for Intraday Stock Market Returns


Book Description

We propose a mixed frequency stochastic volatility (MFSV) model for the dynamics of intraday asset return volatility. In order to account for long-memory we separate stochastic daily and intraday volatility patterns by introducing a long-run component that changes at daily frequency and a short-run component that captures the remaining intraday volatility dynamics. An additional component captures deterministic intraday patterns. We analyze the stochastic properties of the resulting non-linear state-space model both on the daily and the intraday frequency and show how the model can be estimated in a single step using simulated maximum likelihood based on Efficient Importance Sampling (EIS). We apply the model to intraday returns of five New York Stock Exchange traded stocks. The estimation results indicate distinct dynamic patterns for daily and intradaily volatility components, where about 50% of intraday volatility dynamics are explained by the daily component. In-sample diagnostic tests and an out-of-sample forecasting experiment indicate that already the very basic model specification successfully accounts for the complex dynamic and distributional properties of asset returns both on the intraday and the daily frequency.




Empirical Studies on Volatility in International Stock Markets


Book Description

Empirical Studies on Volatility in International Stock Markets describes the existing techniques for the measurement and estimation of volatility in international stock markets with emphasis on the SV model and its empirical application. Eugenie Hol develops various extensions of the SV model, which allow for additional variables in both the mean and the variance equation. In addition, the forecasting performance of SV models is compared not only to that of the well-established GARCH model but also to implied volatility and so-called realised volatility models which are based on intraday volatility measures. The intended readers are financial professionals who seek to obtain more accurate volatility forecasts and wish to gain insight about state-of-the-art volatility modelling techniques and their empirical value, and academic researchers and students who are interested in financial market volatility and want to obtain an updated overview of the various methods available in this area.




Handbook of Volatility Models and Their Applications


Book Description

A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.




Econometric Modelling of Stock Market Intraday Activity


Book Description

Over the past 25 years, applied econometrics has undergone tremen dous changes, with active developments in fields of research such as time series, labor econometrics, financial econometrics and simulation based methods. Time series analysis has been an active field of research since the seminal work by Box and Jenkins (1976), who introduced a gen eral framework in which time series can be analyzed. In the world of financial econometrics and the application of time series techniques, the ARCH model of Engle (1982) has shifted the focus from the modelling of the process in itself to the modelling of the volatility of the process. In less than 15 years, it has become one of the most successful fields of 1 applied econometric research with hundreds of published papers. As an alternative to the ARCH modelling of the volatility, Taylor (1986) intro duced the stochastic volatility model, whose features are quite similar to the ARCH specification but which involves an unobserved or latent component for the volatility. While being more difficult to estimate than usual GARCH models, stochastic volatility models have found numerous applications in the modelling of volatility and more particularly in the econometric part of option pricing formulas. Although modelling volatil ity is one of the best known examples of applied financial econometrics, other topics (factor models, present value relationships, term structure 2 models) were also successfully tackled.




High- and Low-frequency Exchange Rate Volatility Dynamics


Book Description

We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that the range is not only a highly efficient volatility proxy, but also that it is approximately Gaussian and robust to microstructure noise. The good properties of the range imply that range-based Gaussian quasi-maximum likelihood estimation produces simple and highly efficient estimates of stochastic volatility models and extractions of latent volatility series. We use our method to examine the dynamics of daily exchange rate volatility and discover that traditional one-factor models are inadequate for describing simultaneously the high- and low-frequency dynamics of volatility. Instead, the evidence points strongly toward two-factor models with one highly persistent factor and one quickly mean-reverting factor.




Essays on Multivariate Stochastic Volatility Models


Book Description

The first essay describes a very general stochastic volatility (SV) model specification with leverage, heavy tails, skew and switching regimes, using realized volatility (RV) as an auxiliary time series to improve inference on latent volatility. The information content of the range and of implied volatility using the VIX index is also analyzed. Database is the S & P 500 index. Asymmetry in the observation error is modeled by the generalized hyperbolic skew Student-t distribution, whose heavy and light tail enable substantial skewness. Resulting number of regimes and dynamics differ dependent on the auxiliary volatility proxy and are investigated in-sample for the financial crash period 2008/09 in more detail. An out-of-sample study comparing predictive ability of various model variants for a calm and a volatile period yields insights about the gains on forecasting performance from different volatility proxies. Results indicate that including RV or the VIX pays off mostly in more volatile market conditions, whereas in calmer environments SV specifications using no auxiliary series outperform. The range as volatility proxy provides a superior in-sample fit, but its predictive performance is found to be weak. The second essay presents a high frequency stochastic volatility model. Price duration and associated absolute price change in event time are modeled contemporaneously to fully capture volatility on the tick level, combining the SV and stochastic conditional duration (SCD) model. Estimation is with IBM stock intraday data 2001/10 (decimalization completed), taking a minimum midprice threshold of a half tick. Persistent information flow is extracted, featuring a positively correlated innovation term and negative cross effects in the AR(1) persistence matrix. Additionally, regime switching in both duration and absolute price change is introduced to increase nonlinear capabilities of the model. Thereby, a separate price jump.




Modeling Stochastic Volatility with Application to Stock Returns


Book Description

A stochastic volatility model where volatility was driven solely by a latent variable called news was estimated for three stock indices. A Markov chain Monte Carlo algorithm was used for estimating Bayesian parameters and filtering volatilities. Volatility persistence being close to one was consistent with both volatility clustering and mean reversion. Filtering showed highly volatile markets, reflecting frequent pertinent news. Diagnostics showed no model failure, although specification improvements were always possible. The model corroborated stylized findings in volatility modeling and has potential value for market participants in asset pricing and risk management, as well as for policymakers in the design of macroeconomic policies conducive to less volatile financial markets.




A Discrete-Time Model for Daily S&P 500 Returns and Realized Variations


Book Description

We develop an empirically highly accurate discrete-time daily stochastic volatility model that explicitly distinguishes between the jump and continuous-time components of price movements using nonparametric realized variation and Bipower variation measures constructed from high-frequency intraday data. The model setup allows us to directly assess the structural inter-dependencies among the shocks to returns and the two different volatility components. The model estimates suggest that the leverage effect, or asymmetry between returns and volatility, works primarily through the continuous volatility component. The excellent fit of the model makes it an ideal candidate for an easy-to-implement auxiliary model in the context of indirect estimation of empirically more realistic continuous-time jump diffusion and Levy-driven stochastic volatility models, effectively incorporating the relevant information in the high-frequency data.