General Model Independent Searches for Physics Beyond the Standard Model


Book Description

This primer describes the general model independent searches for new physics phenomena beyond the Standard Model of particle physics. First, the motivation for performing general model independent experimental searches for new physics is presented by giving an overview of the current theoretical understanding of particle physics in terms of the Standard Model of particle physics and its shortcomings. Then, the concept and features of general model independent search for new physics at collider based experiments is explained. This is followed by an overview of such searches performed in past high energy physics experiments and the current status of such searches, particularly in the context of the experiments at the LHC. Finally, the future prospects of such general model independent searches, with possible improvements using new tools such as machine learning techniques, is discussed.







Indirect Searches for New Physics


Book Description

This is the first book to discuss the search for new physics in charged leptons, neutrons, and quarks in one coherent volume. The area of indirect searches for new physics is highly topical; though no new physics particles have yet been observed directly at the Large Hadron Collider at CERN, the methods described in this book will provide researchers with the necessary tools to keep searching for new physics. It describes the lines of research that attempt to identify quantum effects of new physics particles in low-energy experiments, in addition to detailing the mathematical basis and theoretical and phenomenological methods involved in the searches, whilst making a clear distinction between model-dependent and model-independent methods employed to make predictions. This book will be a valuable guide for graduate students and early-career researchers in particle and high energy physics who wish to learn about the techniques used in modern predictions of new physics effects at low energies, whilst also serving as a reference for researchers at other levels. Key features: • Takes an accessible, pedagogical approach suitable for graduate students and those seeking an overview of this new and fast-growing field • Illustrates common theoretical trends seen in different subfields of particle physics • Valuable both for researchers in the phenomenology of elementary particles and for experimentalists




Proceedings of the 31st International Conference on High Energy Physics ICHEP 2002


Book Description

The first precision measurements on CP violation in the B system are reported. Both the BELLE and the BABAR collaboration presented, among others, results for sin 2ß with much improved accuracy. Results from the Sudbury Neutrino Observatory, SNO, also deserve to be mentioned. The convincing evidence of solar neutrino oscillations had been presented by SNO prior to the conference; a full presentation was given at the conference. An incredibly precise measurement of the anomalous magnetic moment of the muon is reported, a fresh result from the Brookhaven National Laboratory. Apart from these distinct physics highlights, there are also the first results from the new Tevatron run and from the relativistic heavy ion collider RHIC. Theorists write of our ever better understanding of the Standard Model and of what might lie beyond. Risky as it is to highlight only a couple of exciting subjects, it is merely meantto whet the appetite for further reading.




Indirect Searches for New Physics


Book Description

This is the first book to discuss the search for new physics in charged leptons, neutrons, and quarks in one coherent volume. The area of indirect searches for new physics is highly topical; though no new physics particles have yet been observed directly at the Large Hadron Collider at CERN, the methods described in this book will provide researchers with the necessary tools to keep searching for new physics. It describes the lines of research that attempt to identify quantum effects of new physics particles in low-energy experiments, in addition to detailing the mathematical basis and theoretical and phenomenological methods involved in the searches, whilst making a clear distinction between model-dependent and model-independent methods employed to make predictions. This book will be a valuable guide for graduate students and early-career researchers in particle and high energy physics who wish to learn about the techniques used in modern predictions of new physics effects at low energies, whilst also serving as a reference for researchers at other levels. Key features: • Takes an accessible, pedagogical approach suitable for graduate students and those seeking an overview of this new and fast-growing field • Illustrates common theoretical trends seen in different subfields of particle physics • Valuable both for researchers in the phenomenology of elementary particles and for experimentalists




Phenomena Beyond the Standard Model: What Do We Expect for New Physics to Look Like?


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




The Standard Model Higgs Boson


Book Description

Volume 8.




Lepton Flavor Violation from Low Scale Seesaw Neutrinos with Masses Reachable at the LHC


Book Description

Flavor physics is fundamental to test the Standard Model of particle physics and could be the key to discover new physics. This book explores lepton flavor violating implications in the low scale seesaw models, a well-motivated scenario for explaining the still open problem of neutrino mass generation. It studies the lepton flavor violating Higgs decays in depth, developing useful simple expressions for making fast estimations of this observable. It also introduces a new parametrization optimized for the study of lepton flavor violation in these models, showing that high rates could be obtained for Higgs and Z decays if these new heavy neutrinos have masses in the TeV range. Lastly, it goes on to explore the possibility of their production and decay at the Large Hadron Collider through events with two charged leptons of different flavor.




International Linear Collider (ILC)


Book Description

The International Linear Collider (ILC) is a mega-scale, technically complex project, requiring large financial resources and cooperation of thousands of scientists and engineers from all over the world. Such a big and expensive project has to be discussed publicly, and the planned goals have to be clearly formulated. This book advocates for the demand for the project, motivated by the current situation in particle physics. The natural and most powerful way of obtaining new knowledge in particle physics is to build a new collider with a larger energy. In this approach, the Large Hadron Collider (LHC) was created and is now operating at the world record center of-mass energy of 13 TeV. Although the design of colliders with a larger energy of 50-100 TeV has been discussed, the practical realization of such a project is not possible for another 20-30 years. Of course, many new results are expected from LHC over the next decade. However, we must also think about other opportunities, and in particular, about the construction of more dedicated experiments. There are many potentially promising projects, however, the most obvious possibility to achieve significant progress in particle physics in the near future is the construction of a linear e+e- collider with energies in the range (250-1000) GeV. Such a project, the ILC, is proposed to be built in Kitakami, Japan. This book will discuss why this project is important and which new discoveries can be expected with this collider.